scholarly journals The thrust contact between the Canastra and Vazante groups in the Southern Brasília Belt: structural evolution, white mica crystallinity and implications for the Brasiliano orogeny

2016 ◽  
Vol 46 (4) ◽  
pp. 567-583 ◽  
Author(s):  
Manuela de Oliveira Carvalho ◽  
◽  
Claudio de Morisson Valeriano ◽  
Pamela Alejandra Aparicio González ◽  
Gustavo Diniz Oliveira ◽  
...  

ABSTRACT: Two regional thrust-sheets of Neoproterozoic metasedimentary rocks occur in the Southern Brasília Belt, northwest Minas Gerais. The lower one comprises the Vazante Group, that is formed in the studied area, from base to top, by the Serra do Garrote (metapelites interlayered with carbonaceous phyllite), Serra do Poço Verde (beige to pink stromatolitic metadolomite with interlayered greenish slates), Morro do Calcário (gray stromatolitic metadolomite interlayered with gray slates) and Serra da Lapa (phyllite with dolarenitic lenses interlayered with slates) formations. The upper thrust sheet consists of the Canastra Group (Paracatu formation): laminated sericite phyllites and carbonaceous phyllites interlayered with quartzite. The Braziliano orogeny resulted in four phases of contractional deformation, associated with low-grade metamorphism. The first two (D1 and D2) are ductile, while the third and fourth ones (D3 and D4) are brittle-ductile. D1 developed a slaty S1 cleavage subparallel to the primary layering, with shallow to steep dips to NW. D2 developed a crenulation cleavage (S2) that dips moderately to NW and is associated with tight to isoclinal folds. D3 and D4 phases developed crenulations and open folds and kink bands. S3 dips steeply to NW, while S4 has moderate to steep dips to NE and SW. White mica crystallinity (Kübler index) measurements in metapelites indicate that both the Canastra and Vazante groups reached anchizone/epizone conditions, and metamorphic discontinuities along thrusts indicate that the peak of metamorphism is pre or syn-thrusting.

2013 ◽  
Vol 49 ◽  
pp. 70
Author(s):  
Matthew J. Carter ◽  
Sharon Mosher

Lower greenschist-facies metasedimentary rocks of the Middle Cambrian Conanicut Group occur in and around Beavertail State Park, Rhode Island. Detailed structural mapping (1:1000-scale) and petrology of these rocks indicate an early fold generation (F1) and axial planar metamorphic foliation (S1). F1 is folded by a more prominent, E-verging, NNE- to NNW-trending, non-coaxial fold generation (F2) and an associated pressure solution-enhanced crenulation cleavage (S2). A third map-scale fold generation is inferred from NNE-trending broad folding of F2 and S2. N-S extension resulted in boudins that deformed S2 on a scale of 1–10 m, whereas late planar quartz veins indicate NW-SE extension. All structures are cross cut by faults striking N- to NE- and ENE-to ESE that show dominantly normal motion with minor sinistral or dextral components. Kink bands associated with faulting trend NNE to ENE with WNW to NNW side up. The vertical Beaverhead shear zone juxtaposes the Cambrian rocks with Pennsylvanian rocks of the Narragansett Basin, and deflects S2 in a dextral sense, consistent with motion recorded elsewhere.The Cambrian rocks record the same deformation and metamorphism as the adjacent Narragansett Basin rocks. No evidence was found for pre-Alleghanian deformation or for northwest- or north-directed thrusting and accretion of a Meguma-like terrane during the Alleghanian orogeny. If the Beaverhead shear zone was a preexisting terrane boundary within Avalonia, both the Cambrian and Pennsylvanian Narragansett Basin sediments were deposited aſter terrane accretion.RÉSUMÉDes roches profondes métasédimentaires du faciès des schistes verts, que l’on retrouve dans le groupe Conanicut du Cambrien moyen, sont présentes dans le Beavertail State Park, au Rhode Island, et dans les environs. Une cartographie structurale détaillée (à l’échelle 1:1 000) et la pétrologie de ces roches indiquent la formation précoce d’un pli (F1) et une foliation métamorphique (S1) de plan axial. Le F1 est causé par la formation d’un pli (F2) non coaxial plus dominant, à vergence est et d’orientation NNE-NNO ainsi que par une schistosité de crénulation (S2) amplifiée en raison d’une dissolution par pression connexe. La formation d’un troisième pli à l’échelle cartographique est provoquée par un vaste plissement du F2 et de la S2 d’orientation NNE. Une extension N-S a produit des boudins qui déforment la S2 sur l’échelle de 1 à 10 m, tandis que des veines de quartz planes formées ultérieurement indiquent une extension NO-SE. Toutes les structures sont traversées par des failles orientées N-NE et ENE-ESE montrant un mouvement normal dominant accompagné de composantes senestres et dextres peu importantes. Les bandes froissées associées à ces failles sont orientées NNE-ENE et présentent une tangente verticale ONO-NNO. Dans la zone de cisaillement verticale de Beaverhead, les roches du Cambrien sont juxtaposées aux roches de la Pennsylvanie du bassin Narragansett, et la S2 dévie en un mouvement dextre, ce qui concorde avec le mouvement enregistré ailleurs.Les roches du Cambrien montrent la même déformation et le même métamorphisme que les roches du bassin Narragansett adjacent. On n’a trouvé aucune donnée appuyant la création d’une déformation avant l’orogenèse alléghanienne ni celle d’un chevauchement et d’une accrétion orientés vers le nord ou le nordouest d’un terrane semblable à la zone de Meguma lors de l’orogenèse alléghanienne. Si la zone de cisaillement verticale de Beaverhead constituait une limite de terrane qui existait avant l’orogenèse de l’Avalonien, les sédiments cambriens et pennsylvaniens du bassin Narragansett se sont déposés après l’accrétion du terrane.[Traduit par la redaction]


2011 ◽  
Vol 38 (2) ◽  
pp. 268 ◽  
Author(s):  
Sebastian O. Verdecchia ◽  
Gilda Collo ◽  
Edgardo G. Baldo

Two tectono-thermal metamorphic events, M1-D1 (S1, with associated white mica and chlorite: WM1-Chl1) and M2-D2 (S2, with development of WM2-Chl2), are established from polyphase white mica growth for low-grade units from the Ordovician metasedimentary successions of La Cebila Metamorphic Complex in the Famatinian belt (western-central Argentina). The thermobarometric characterization of the M1 main event was carried out by means of clay-mineral analysis and crystallo-chemical parameter measurements. Epizonal (temperatures between 300 and 400ºC) and low-pressure conditions are suggested for M1 event, based in Kübler index values ranging from 0.23 to 0.17 Δº2θ, white mica b parameter values between 9.004 and 9.022 Å (mean of 9.014 Å, n=16) and Si contents between 3.13-3.29 a.p.f.u. Temperatures of ~180-270ºC are estimated for the M2 event, with Kübler index values ranging from 0.31 to 0.46 Δº2θ. The M1-D1 event of La Cebila could be linked to highstrain heating tectono-metamorphic Ordovician regime recorded in others complexes from Famatinian foreland region of Sierras Pampeanas.


2021 ◽  
pp. 1-17
Author(s):  
Susobhan Neogi ◽  
Apoorve Bhardwaj ◽  
Amitava Kundu

Abstract Fragmentation and amalgamation of supercontinents play an important role in shaping our planet. The break-up of such a widely studied supercontinent, Rodinia, has been well documented from several parts of India, especially the northwestern and eastern sector. Interestingly, being located very close to the Proterozoic tectonic margin, northeastern India is expected to have had a significant role in Neoproterozoic geodynamics, but this aspect has still not been thoroughly studied. We therefore investigate a poorly studied NE–SW-trending Shillong Basin of Meghalaya from NE India, which preserves the stratigraphic record and structural evolution spanning the Neoproterozoic Era. The low-grade metasedimentary rocks of Shillong Basin unconformably overlie the high-grade Archean–Proterozoic basement and comprise a c. 4000-m-thick platform sedimentary rock succession. In this study, we divide this succession into three formations: lower Tarso, middle Ingsaw and upper Umlapher. A NW–SE-aligned compression event later caused the thrusting of these sedimentary rocks over the basement with a tectonic contact in the western margin, resulting in NE–SW-trending fold belts. The rift-controlled Shillong Basin shows a comparable Neoproterozoic evolution with the equivalent basins of peninsular India and eastern Gondwana. The recorded Neoproterozoic rift tectonics are likely associated with Rodinia’s break-up and continent dispersion, which finally ended with the oblique collision of India with Australia and the intrusion of Cambrian granitoids during the Pan-African Orogeny, contributing to the assembly of Gondwana. This contribution is the first to present a complete litho-structural evolution of the Shillong Basin in relation to regional and global geodynamic settings.


2001 ◽  
Vol 34 (1) ◽  
pp. 129 ◽  
Author(s):  
Α. ΑΥΓΕΡΙΝΑΣ ◽  
Α. ΚΙΛΙΑΣ ◽  
Α. ΚΟΡΩΝΑΙΟΣ ◽  
Δ. ΜΟΥΝΤΡΑΚΗΣ ◽  
W. FRISCH ◽  
...  

The kinematic of the Cretaceous deformation and the relationship between deformation and metamorphism of the Pelagonian crystalline was studied in Voras Mt (northern Greece). The Pelagonian crystalline in this area has been subdivided into a lower, core part, consisting mainly of gneissic rocks and schists and an upper, cover part, consistine of schists and quartzites with marble intercalations. Intensely deformed granitic rocks of Upper Paleozoic age intrude the Pelagonian crystalline basement. An S j foliation is the oldest fabric recognized in the Pelagonian crystalline. Sj is mainly defined by syn-Sjgarnet(Gr1), biotite(Btj), white mica (Wnij), chloritoid, kyanite and plagioclase in the metapelitic rocks and green amphibole, epidote, plagioclase, and biotiteiBtj) in the amphibolite. Garnet grows also in some cases post-kinematically. Ilmenite and tourmaline are often found in the pelitic rocks as well. S is overprinted by an S2 foliation that developed as a crenulation cleavage. In most places, however, S2 has destroyed all earlier fabrics and a single S2 fabric is present related to, isoclinal or sheath folds intrafolial in places. S2 in the metapelitic rocks is characterized by the syn-S2 development of chlorite, white mica(Wm2) and plagioclase. In the amphibolite S2 is mainly defined by the syn-kinematic development of actinolite, plagioclase, biotite(Bt2), white mica(Wm2) and chlorite. During D2 garnet(Gr1) and biotiteiBtj) are partially replaced by chlorite, while green amphibole is replaced by actinolite and chlorite. Chloritoid remains generally stable along the S2-planes but in some places transforms to chlorite and sericite. Furthermore, D2 was locally followed by a static post-kinematic annealing indicated by polygonal quartz microfabrics with equilibrated grain boundaries and triple points. The overall orientation of S2 is dome shaped with a gentle SW-ward and NE-ward dip in the southwestern and northeastern flanks of the dome respectively. Syn-S2 minerals defined a very well exposed NW-SE trending stretching lineation. Kinematic indicators show a main top to the SE sense of movement. An S3 crenulation cleavage associated with asymmetric NW-SE trending folds is also present in most parts of the core and cover rocks, possibly, related to a constrictional type of deformation. A well developed, S4 shear band cleavage is mainly present in the upper parts of the metamorphic dome and formed under cooler conditions. S4 shear bands are associated with a NW-SE developed stretching lineation defined by elongated and dynamically recrystallized quartz grains and a preferred orientation of white mica and chlorite. Along the S4 shear bands a transformation of garnet, biotite, chloritoid and amphibole into chlorite is always observed. S4 shear bands indicate a main top to the SE sense of movement. The P-T metamorphic conditions were derived from textural equilibria and mineral assemblages, as well as from the spatial distribution of the metamorphic minerals. Syn-Dj metamorphism reached the conditions of the boundaries between greenschist and amphibolite facies. Syn-D2 retrogression took place under greenschist facie conditions. K/Ar radiometric datings on coarse-grained syn-St and younger fine-grained syn-S2 micas define an Early Cretaceous cooling age ('135Ma) for the older event and a Mid- to Late Cretaceous age ('90-80Ma) for the second event. A white mica age of ca. 65Ma correlates with S4 shear band clevage. Furthermore, the intrusion age of a granitic body into the Pelagonian crystalline is dated using the Pb/Pb single zircon evaporation method. The estimated intrusion age of 300±3Ma suggests that the Pelagonian crystalline was affected by a pre-kinematic magmatic activity relative to its Cretaceous deformation.


2020 ◽  
pp. 101-120
Author(s):  
Nicholas H.S. Oliver ◽  
Brian Thomson ◽  
Flavio H. Freitas-Silva ◽  
Rodney J. Holcombe

Abstract The Paracatu deposit in Brazil is a shallowly dipping, bulk-tonnage, low-grade, vein-style orogenic Au orebody hosted in very strongly deformed Neoproterozoic carbonaceous phyllite of the southern Brasília fold belt. At regional to district scales, the gold orebody lies along the eastern, hanging-wall edge of a major thrust of the ~630 Ma Brasiliano orogeny. This thrust cuts through a facies transition between clastic-dominated rocks of the Canastra Group and carbonate-dominant rocks of the Vazante Group, deposited at ~1000 Ma in a rift to passive-margin environment on the flank of the São Francisco craton. At the same scales, the footwall of this major thrust system hosts numerous structurally controlled zinc deposits including Vazante and Morro Agudo. At Paracatu, ore genesis occurred primarily by the formation of early tectonic quartz sulfide-carbonate veins, prior to substantial ductile deformation (boudinage), local physico-chemical reworking of these veins, and redistribution of some gold. Structural, geochemical, and isotopic data indicate a strong influence of the local rocks (cm to 100-m scales) on many ore ingredients, and the quartz and carbonate in ore veins were most likely derived locally (cm to m scales). However, the coassociation of gold and arsenic with the boudinaged veins and a major thrust, and the absence of metal enrichments normally associated with syngenetic metalliferous black shales, supports a model of far-field derivation of gold within this metasedimentary package (km to 10-km scales). Transport of metal-bearing fluids toward a favorable structural and chemical site during thrusting and orogenesis was possibly focused, during precipitation to ore grades, by the position of transverse structures in the basement, which also influenced deposition of the adjacent zinc deposits. Successful mining of the low-grade resource was initially favored by the subhorizontal orebody geometry and weathering characteristics, and subsequently by high production rates from the 100-m-thick mineralized zone.


2010 ◽  
Vol 47 (2) ◽  
pp. 121-135 ◽  
Author(s):  
Isabel Abad ◽  
J. Brendan Murphy ◽  
Fernando Nieto ◽  
Gabriel Gutiérrez-Alonso

The Late Devonian – Early Carboniferous St. Mary’s Basin in the Canadian Appalachians consists of Horton Group fluviatile and lacustrine clastic rocks. The basin occurs along the boundary between the Avalon and Meguma terranes and developed during coeval dextral shear along that boundary. X-ray diffraction reveals that the rocks contain ubiquitous quartz, K-white mica, and albite; illite–smectite mixed layers and chlorite are very common and Na–K mica, kaolinite, chlorite–smectite mixed layers, K-feldspar, berthierine, and rutile occur in some samples. Crystal-chemical parameters of white mica indicate the pressure and temperature of mineral growth and discriminate between diagenetic, anchizone, and low-grade metamorphic processes. Kübler index values measured in the 5 Å peak and the presence of chlorite–mica stacks are indicative of high-anchizone–epizone grades, with a crystallinity (crystal size and number of defects) that increases towards the Chedabucto Fault, which defines the northern margin of the basin. Kübler index values measured in the 10 Å peak indicate that a late fluid-rich event could have produced the observed illite–smectite mixed layers. The overall clay-mineral content and the b-cell dimension of the K-white micas are typical of postdepositional evolution in extensional sedimentary basins with high heat flow (>35 °C/km). Taken together, our data record two superposed events related to deformation along the basin margins and coeval regional fluid flow, in which retrograde reactions at temperature T < 200 °C were superimposed on a pre-existing prograde assemblage typical of high-anchizone – lower greenschist-facies conditions (T > 300 °C). Regional syntheses indicate that this fluid flow may have occurred during episodes of Late Carboniferous dextral shear along the Avalon–Meguma terrane boundary.


1991 ◽  
Vol 28 (5) ◽  
pp. 788-799 ◽  
Author(s):  
P. Rhéaume ◽  
K. Schrijver

The Bic fault is exposed along the shoreline of the St. Lawrence River, 21 km southwest of Rimouski, for 210 m at Cap à l'Orignal and for 100 m at Cap Enragé. The fault brings in contact two major thrust sheets, the Des Seigneuries and the Des Iles, Cambrian lithologies of the former overlying Ordovician rocks of the latter. In the Taconic Orogen, such contacts are normally thrust faults, but the Bic fault is a dextral strike-slip fault, striking east–west and dipping southward. A study of a narrow zone straddling the fault and an adjacent part of the Des Seigneuries thrust sheet has led to the recognition of four successive stages of deformation, all compatible with a northeast–southwest-trending strain ellipsoid. The two first stages are most important: stage 1 brought about regional folding and faulting, whereas stage 2 was characterized by the development of various structural elements (C–S fabrics, stretching lineation, Riedel shears, and kink bands) exclusive to the fault zone. We infer that (i) in the study area, the Bic fault constituted a lateral ramp along which the Des Seigneuries thrust sheet slid horizontally westward; and (ii) emplacement of Ba–Pb–Zn deposits took place slightly after this movement, probably during regional uplift of the orogen in Late Ordovician to Early Silurian time. The latter hypothesis tends to be corroborated by model lead ages of galena in two deposits.


2014 ◽  
Vol 86 (3) ◽  
pp. 1101-1113 ◽  
Author(s):  
FABRÍCIO A. CAXITO ◽  
ALEXANDRE UHLEIN ◽  
LUIZ F.G. MORALES ◽  
MARCOS EGYDIO-SILVA ◽  
JULIO C.D. SANGLARD ◽  
...  

The Rio Preto fold belt borders the northwestern São Francisco craton and shows an exquisite kilometric doubly-vergent asymmetric fan structure, of polyphasic structural evolution attributed exclusively to the Brasiliano Orogeny (∼600-540 Ma). The fold belt can be subdivided into three structural compartments: The Northern and Southern compartments showing a general NE-SW trend, separated by the Central Compartment which shows a roughly E-W trend. The change of dip of S2, a tight crenulation foliation which is the main structure of the fold belt, between the three compartments, characterizes the fan structure. The Central Compartment is characterized by sub-vertical mylonitic quartzites, which materialize a system of low-T strike slip shear zones (Malhadinha – Rio Preto Shear Zone) crosscutting the central portion of the fold belt. In comparison to published analog models, we consider that the unique structure of the Rio Preto fold belt was generated by the oblique, dextral-sense interaction between the Cristalândia do Piauí block to the north and the São Francisco craton to the south.


2021 ◽  
Author(s):  
Mario Buehler ◽  
Roger Zurbriggen ◽  
Alfons Berger ◽  
Marco Herwegh ◽  
Daniela Rubatto

&lt;p&gt;Many pre&amp;#8208;Mesozoic basements of the Alpine belt contain kilometre&amp;#8208;scaled folds with steeply inclined axial planes and fold axes. Those structures are referred to as Schlingen folds. They deform polymetamorphic gneisses, often Late&amp;#8208;Ordovician metagranitoids and are cross&amp;#8208;cut themselves by Permian intrusions. However, the structural evolution of such Schlingen is still not completely understood and their geodynamic significance for the Variscan evolution is not clear. To close this gap, this study investigates in detail a well-preserved Schlingen structure in the Gotthard nappe (Central Swiss Alps). This Schlingen fold evolved by a combination of shearing and folding under amphibolite facies conditions. Detailed digital field mapping coupled with petrological and structural investigations reveal local synkinematic migmatisation in the fold hinges parallel to axial planes. U&amp;#8208;Pb dating of zircons separated from associated leucosomes reveal cores that record a detrital country rock age of 450 &amp;#177; 3 Ma, and rims with a range of dates from 270 to 330 Ma. The main cluster defines an age of 316 &amp;#177; 4 Ma. We ascribe this Late&amp;#8208;Carboniferous age to peak metamorphic conditions of the late&amp;#8208;Variscan Schlingen phase.&lt;/p&gt;&lt;p&gt;The pre-Schlingen structures are subdivided into three older deformation events, which are connected to the Cenerian and post-Cenerian deformations. In addition, until now unknown, post Schlingen-, but pre-Alpine transpressional deformation have been detected and described. This superimposed deformation produced locally a low-grade foliation and minor undulation of the Schlingen structures.&lt;/p&gt;&lt;p&gt;The detail data of the investigated fold structures are linked with already described Schlingen folds in the wider Alpine realm, which all are concentrated in the most southern parts of the Variscides. From a geodynamic point of view and based on the new tectono-metamorphic constraints, we propose Schlingen formation preceded and concurred the crustal-scale transpressional tectonics of the East Variscan Shear Zone. This scenario separates, at least in a structural sense, the Southern Variscides from more northern parts (also Gondwana derived) inside Pangea, where Schlingen folds are absent.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document