Discussion of “Geochemical signature of Ordovician Mn-rich sedimentary rocks on the Avalonian shelf”1Appears in Canadian Journal of Earth Sciences, 2011, 48(4): 703–718 [doi: 10.1139/e10-092].

2012 ◽  
Vol 49 (6) ◽  
pp. 772-774 ◽  
Author(s):  
John W.F. Waldron ◽  
Chris E. White

The paper “Geochemical signature of Ordovician Mn-rich sedimentary rocks on the Avalonian shelf” (Romer et al., published in 2011) describes six samples of which four are from the Meguma Supergroup of Nova Scotia. Previous work indicates that these samples are Cambrian and that they were deposited in a deep-water turbidite basin (“Megumia”), not on the Avalonian shelf. The geochemical data support models for Mn concentration, involving oxidation and reduction in a sedimentary environment but do not constrain water depth. Likely correlatives are in the Cambrian of North Wales and not in the European localities sampled by the authors.

2012 ◽  
Vol 49 (6) ◽  
pp. 775-780 ◽  
Author(s):  
Rolf L. Romer ◽  
Uwe Kroner

In their comment, Waldron and White state that manganese-rich sedimentary rocks of Nova Scotia and Wales are Cambrian and were deposited in a deep-water turbidite basin called “Megumia” rather than on the Avalonian shelf. Available geochronological data are not in conflict with an Early Ordovician deposition age for manganese-rich sedimentary rocks north of the Rheic suture, including those of Nova Scotia and northern Wales. “Megumia” is part of the Avalonian plate, and the manganese-rich sediments were deposited on its shelf.


2012 ◽  
Vol 49 (11) ◽  
pp. 1378-1383
Author(s):  
Rolf L. Romer ◽  
Uwe Kroner

Romer and Kroner (2012) stated “the core of the Harlech Dome (i) in part is made up of Ordovician deposits and (ii) contains tectonic repetitions”. In their comment, Schofield et al. (this issue) distort this statement and state that (i) we claim the entire sedimentary sequence of the Harlech Dome is Ordovician and (ii) we misinterpreted their zircon data. We disagree. In our reply, we demonstrate that the argumentation of Schofield et al. (this issue) is driven by circular argumentation and that their use and interpretation of U–Pb zircon data is inadequate.


2012 ◽  
Vol 49 (11) ◽  
pp. 1372-1377
Author(s):  
David I. Schofield ◽  
John W.F. Waldron ◽  
Chris E. White ◽  
Sandra M. Barr

In their article ‘Reply to the discussion by J.W.F. Waldron and C.E. White on “Geochemical signature of Ordovician Mn-rich sedimentary rocks on the Avalonian shelf”’, R.L. Romer and U. Kroner reinterpret geochronological data presented by J.W.F. Waldron, D.I. Schofield, C.E. White, and S.M. Barr to imply an Ordovician, not a Cambrian, depositional age for the succession of the Harlech Dome, North Wales, and Meguma Supergroup, Nova Scotia. However, an extensive history of biostratigraphic and geological survey data refutes this interpretation and shows that the rocks are unequivocally Cambrian. Waldron et al. used the U–Pb zircon laser-ablation – multicollector – inductively coupled plasma – mass spectrometry technique primarily to provide information on sediment provenance and not depositional age. Investigation of anomalously young 206Pb/238U ages showed evidence of Pb loss. These data provide little constraint on depositional age and cannot be used to infer that the Harlech Grits Group is Ordovician.


2017 ◽  
Vol 54 (1) ◽  
pp. 33-51 ◽  
Author(s):  
Dan-Cezar Dutuc ◽  
Georgia Pe-Piper ◽  
David J.W. Piper

Jurassic and Cretaceous sandstones in the Shelburne subbasin and Fundy Basin offshore Nova Scotia, are poorly known but are of current interest for petroleum exploration. The goal of this study is to determine the provenance of sandstones and shales, which will contribute to a better understanding of regional tectonics and paleogeography in the study area. Mineral and lithic clast chemistry was determined from samples from conventional cores and cuttings from exploration wells, using scanning electron microscopy and an electron microprobe. Whole-rock geochemical composition of shales was used to test the hypotheses regarding provenance of Mesozoic clastic sedimentary rocks in the SW Scotian Basin. Lower Jurassic clastic sedimentary rocks in the Fundy Basin contain magnetite, biotite, and chlorite, suggesting local supply from the North Mountain Basalt and Meguma Terrane, whereas pyrope and anthophyllite suggest small supply from distant sources. In the SW Scotian Basin, detrital minerals, lithic clasts, and shale geochemistry from Middle Jurassic to Early Cretaceous indicate a predominant Meguma Terrane source and transport by local rivers. Rare spinel and garnet grains of meta-ultramafic rocks, only in the Middle Jurassic at the Mohawk B-93 well, suggest minor supply from the rising Labrador rift, via the same river that transported distant sediments to the Fundy Basin. Lower Cretaceous sandstones from the Mohican I-100 well contain minor garnet, spinel, and tourmaline from meta-ultramafic rocks, characteristic of sediment supplied to the central Scotian Basin at that time. The dominant Meguma Terrane provenance precludes thick deep-water sandstones in the eastern part of the Shelburne subbasin, but the evidence of Middle Jurassic distant river supply through the Fundy Basin is encouraging for deep-water reservoir quality in the western part.


1991 ◽  
Vol 28 (4) ◽  
pp. 489-503 ◽  
Author(s):  
F. Corfu ◽  
S. L. Jackson ◽  
R. H. Sutcliffe

The paper presents U–Pb ages for zircons of the calc-alkalic to alkalic igneous suite and associated alluvial–fluvial sedimentary rocks of the Timiskaming Group in the late Archean Abitibi greenstone belt, Superior Province. The Timiskaming Group rests unconformably on pre-2700 Ma komatiitic to calc-alkalic volcanic sequences and is the expression of the latest stages of magmatism and tectonism that shaped the greenstone belt. An age of 2685 ± 3 Ma for the Bidgood quartz porphyry, an age of about 2685–2682 Ma for a quartz–feldspar porphyry clast in a conglomerate, and ages ranging from 2686 to 2680 Ma for detrital zircons in sandstones appear to reflect an early stage in the development of the Timiskaming Group. The youngest detrital zircons in each of three sandstones at Timmins, Kirkland Lake, and south of Larder Lake define maximum ages of sedimentation at about 2679 Ma; the latter sandstone is cut by a porphyry dyke dated by titanite at [Formula: see text], identical to the 2677 ± 2 Ma age for a volcanic agglomerate of the Bear Lake Formation north of Larder Lake. Similar ages have previously been reported for syenitic to granitic plutons of the region. The dominant period of Timiskaming sedimentation and magmatism was thus 2680–2677 Ma. Xenocrystic zircons found in a porphyry and a lamprophyre dyke have ages of 2750–2720 Ma, which correspond to the ages of the oldest units in the belt, predating the volumetrically dominant ca. 2700 Ma greenstone sequences. The presence of these xenocrysts and the onlapping of the Timiskaming Group on all earlier lithotectonic units of the southern Abitibi belt support the concept that the 2700 Ma ensimatic sequences were thrust onto older assemblages during a phase of compression that culminated with the generation of tonalite and granodiorite at about 2695–2688 Ma. Published geochemical data for the Timiskaming igneous suite, notably the enrichments in large-ion lithophile elements and light rare-earth elements and the relative depletion of Nb, Ta, and Ti compare with the characteristics of suites at modern convergent settings such as the Eolian and the Banda arcs and are consistent with generation of the melts from deep metasomatized mantle in the final stages of, or after cessation of, subduction. Late- and post-Timiskaming compression caused north-directed thrusting and folding. Turbiditic sedimentary units of the Larder Lake area which locally structurally overly the alluvial–fluvial sequence and were earlier thought to be part of the Timiskaming Group, appear to be older "flyschoid" sequences, possibly correlative with sedimentary rocks deposited in the Porcupine syncline at Timmins between 2700 and 2690 Ma.


Author(s):  
Roger Slora ◽  
Stian Karlsen ◽  
Per Arne Osborg

There is an increasing demand for subsea electrical power transmission in the oil- and gas industry. Electrical power is mainly required for subsea pumps, compressors and for direct electrical heating of pipelines. The majority of subsea processing equipment is installed at water depths less than 1000 meters. However, projects located offshore Africa, Brazil and in the Gulf of Mexico are reported to be in water depths down to 3000 meters. Hence, Nexans initiated a development programme to qualify a dynamic deep water power cable. The qualification programme was based on DNV-RP-A203. An overall project plan, consisting of feasibility study, concept selection and pre-engineering was outlined as defined in DNV-OSS-401. An armoured three-phase power cable concept assumed suspended from a semi-submersible vessel at 3000 m water depth was selected as qualification basis. As proven cable technology was selected, the overall qualification scope is classified as class 2 according to DNV-RP-A203. Presumed high conductor stress at 3000 m water depth made basis for the identified failure modes. An optimised prototype cable, with the aim of reducing the failure mode risks, was designed based on extensive testing and analyses of various test cables. Analyses confirmed that the prototype cable will withstand the extreme loads and fatigue damage during a service life of 30 years with good margins. The system integrity, consisting of prototype cable and end terminations, was verified by means of tension tests. The electrical integrity was intact after tensioning to 2040 kN, which corresponds to 13 000 m static water depth. A full scale flex test of the prototype cable verified the extreme and fatigue analyses. Hence, the prototype cable is qualified for 3000 m water depth.


2021 ◽  
Author(s):  
Li Zhang ◽  
Lei Xing ◽  
Mingyu Dong ◽  
Weimin Chen

Abstract Articulated pusher barge vessel is a short-distance transport vessel with good economic performance and practicability, which is widely used in the Yangtze River of China. In this present work, the resistance performance of articulated pusher barge vessel in deep water and shallow water was studied by model tests in the towing tank and basin of Shanghai Ship and Shipping Research Institute. During the experimental investigation, the articulated pusher barge vessel was divided into three parts: the pusher, the barge and the articulated pusher barge system. Firstly, the deep water resistance performance of the articulated pusher barge system, barge and the pusher at design draught T was studied, then the water depth h was adjusted, and the shallow water resistance at h/T = 2.0, 1.5 and 1.2 was tested and studied respectively, and the difference between deep water resistance and shallow water resistance at design draught were compared. The results of model tests and analysis show that: 1) in the study of deep water resistance, the total resistance of the barge was larger than that of the articulated pusher barge system. 2) for the barge, the shallow water resistance increases about 0.4–0.7 times at h/T = 2.0, 0.5–1.1 times at h/T = 1.5, and 0.7–2.3 times at h/T = 1.2. 3) for the pusher, the shallow water resistance increases about 1.0–0.4 times at h/T = 2.7, 1.2–0.9 times at h/T = 2.0, and 1.7–2.4 times at h/T = 1.6. 4) for the articulated pusher barge system, the shallow water resistance increases about 0.2–0.3 times at h/T = 2.0, 0.5–1.3 times at h/T = 1.5, and 1.0–3.5 times at h/T = 1.2. Furthermore, the water depth Froude number Frh in shallow water was compared with the changing trend of resistance in shallow water.


2021 ◽  
pp. 1-49
Author(s):  
Boling Pu ◽  
Dazhong Dong ◽  
Ning Xin-jun ◽  
Shufang Wang ◽  
Yuman Wang ◽  
...  

Producers have always been eager to know the reasons for the difference in the production of different shale gas wells. The Southern Sichuan Basin in China is one of the main production zones of Longmaxi shale gas, while the shale gas production is quite different in different shale gas wells. The Longmaxi formation was deposited in a deep water shelf that had poor circulation with the open ocean, and is composed of a variety of facies that are dominated by fine-grained (clay- to silt-size) particles with a varied organic matter distribution, causing heterogeneity of the shale gas concentration. According to the different mother debris and sedimentary environment, we recognized three general sedimentary subfacies and seven lithofacies on the basis of mineralogy, sedimentary texture and structures, biota and the logging response: (1) there are graptolite-rich shale facies, siliceous shale facies, calcareous shale facies, and a small amount of argillaceous limestone facies in the deep - water shelf in the Weiyuan area and graptolite-rich shale facies and carbonaceous shale facies in the Changning area; (2) there are argillaceous shale facies and argillaceous limestone facies in the semi - deep - water continental shelf of the Weiyuan area and silty shale facies in the Changning area; (3) argillaceous shale facies are mainly developed in the shallow muddy continental shelf in the Weiyuan area, while silty shale facies mainly developed in the shallow shelf in the Changning area. Judging from the biostratigraphy of graptolite, the sedimentary environment was different in different stages.


Author(s):  
Jairo Bastos de Araujo ◽  
Roge´rio Diniz Machado ◽  
Cipriano Jose de Medeiros Junior

Petrobras developed a new kind of anchoring device known as Torpedo. This is a steel pile of appropriate weight and shape that is launched in a free fall procedure to be used as fixed anchoring point by any type of floating unit. There are two Torpedoes, T-43 and T-98 weighing 43 and 98 metric tons respectively. On October 2002 T-43 was tested offshore Brazil in Campos Basin. The successful results approved and certified by Bureau Veritas, and the need for a feasible anchoring system for new Petrobras Units in deep water fields of Campos Basin led to the development of a Torpedo with High Holding Power. Petrobras FPSO P-50, a VLCC that is being converted with a spread-mooring configuration will be installed in Albacora Leste field in the second semester of 2004. Its mooring analysis showed that the required holding power for the mooring system would be very high. Drag embedment anchors option would require four big Anchor Handling Vessels for anchor tensioning operations at 1400 m water depth. For this purpose T-98 was designed and its field tests were completed in April 2003. This paper discusses T-98 design, building, tests and ABS certification for FPSO P-50.


Author(s):  
Rodrigo A. Barreira ◽  
Vinicius L. Vileti ◽  
Joel S. Sales ◽  
Sergio H. Sphaier ◽  
Paulo de Tarso T. Esperança

A new conceptual design of a deepwater MONOBUOY, named DeepWater MultiColumn Buoy (DWMCB), patent PCT/BR2011/000133, was developed by PETROBRAS/CENPES. The DWMCB was designed to be part of an offloading system for a Spread Moored Floating Production Offloading Unit (FPSO). The offloading system principle consists of Oil being exported from the FPSO to a Shutle tanker passing through Offloading Oil Lines (OOLs) that are supported by the DWMCB. The system is designed to operate at a water depth of 2,200 meters, with expected in site life duration of 25 years. The geometry of DWMCB was defined after an optimization process in order to minimize its motions. This paper describes the development of this concept and discusses the results from some design verifications done with the help of a model tests campaign. An equivalent traditional shaped monobuoy was also tested for comparison purposes.


Sign in / Sign up

Export Citation Format

Share Document