ARCHAEAN SEDIMENTARY ROCKS OF NORTH SPIRIT LAKE AREA, NORTHWESTERN ONTARIO

1965 ◽  
Vol 2 (6) ◽  
pp. 622-647 ◽  
Author(s):  
J. A. Donaldson ◽  
G. D. Jackson

Archaean sedimentary rocks of the North Spirit Lake area show little evidence of having been derived predominantly from associated Archaean volcanic rocks. Instead, compositions of the sediments reflect significant sedimentary and (or) granitoid provenance. A remarkably high content of clastic quartz in thick units of sandstone and conglomerate suggests either reworking of older quartzose sediments, or reduction of the labile constituents in quartz-rich granitoid rocks through prolonged weathering and rigorous transport. Observations for other sedimentary sequences in the region between Red Lake and Lansdowne House suggest that the North Spirit sediments are not unique in the Superior Province. Quartzose sandstones commonly are regarded as atypical of the Archaean, but such rocks arc abundant in northwestern Ontario. Frameworks of many Archaean greywackes actually are richer in quartz than typical greywackes from numerous Proterozoic and Phanerozoic sequences.The concept of rapidly rising volcanic arcs as the sole source of Archaean sedimentary detritus is rejected for the North Spirit area. The volcanies, rather than representing relicts of protocontinents, probably record events removed from initial volcanism in the history of the earth by one or more orogenic cycles. Major unconformities may therefore exist not only between sedimentary and volcanic units, but also between these units and older granitoid rocks.


1977 ◽  
Vol 14 (9) ◽  
pp. 1980-1990 ◽  
Author(s):  
J. A. Donaldson ◽  
Richard W. Ojakangas

An Archean conglomerate in the North Spirit Lake area of northwestern Ontario contains rare orthoquartzite pebbles. Detailed study of these pebbles shows that mineralogically they are very mature, consisting of as much as 99.8 percent quartz and a heavy mineral suite of zircon, tourmaline, and apatite. Textures are typically bimodal, characterized by rounded sand-sized quartz grains set in a 'matrix-cement' of thoroughly recrystallized finer quartz grains. These orthoquartzite pebbles provide the first definite evidence for local tectonic stability of the Canadian Shield before deposition of the immature sedimentary rocks that form part of an Archean (>2.6 Ga) greenstone belt of the Superior Province.



1993 ◽  
Vol 30 (9) ◽  
pp. 1970-1980 ◽  
Author(s):  
J. K. Mortensen ◽  
K. D. Card

New U–Pb zircon, titanite, and monazite ages help constrain the history of magmatism and tectonism within the Pontiac Subprovince of western Quebec. The Pontiac Subprovince resembles other metasedimentary belts of the Superior Province; however, the stratigraphic relationships between the dominantly sedimentary rocks of the Pontiac and the adjacent, volcanic-dominated Abitibi belt to the north and west remain controversial. Volcanic rocks of the Belleterre volcanic zone in the southern part of the Pontiac Subprovince have been interpreted by other workers as klippen of Abitibi strata that were thrust southward onto the Pontiac Subprovince. However, volcanic rocks in the Belleterre zone give crystallization ages of 2689–2682 Ma, which are younger than any extrusive rocks dated thus far from the Abitibi belt. Single detrital zircon grains from Pontiac sedimentary rocks give ages as young as 2683 Ma, indicating that the sediments are similar in age, or younger than, the volcanic units. The volcanic rocks probably represent distal facies of small volcanic arcs deposited within a large turbidite basin.The Lac des Quinze tonalitic gneiss body gives U–Pb zircon and titanite ages of 2695 ± 1 Ma and 2673 ± 4 Ma, respectively. Although the gneiss may represent basement to the supracrustal units, field relationships indicate that it was tectonically juxtaposed against the supracrustal package. Alkaline intrusive rocks in the Pontiac Subprovince yield U–Pb ages that overlap with the youngest ages obtained from the volcanic units. This attests to a very short-lived cycle of sedimentation and arc magmatism, followed by late tectonic and posttectonic alkaline plutonism.



1992 ◽  
Vol 29 (10) ◽  
pp. 2133-2145 ◽  
Author(s):  
Donald T. James ◽  
James K. Mortensen

Archean rocks in the Fenton Lake – Brown Lake area, southern Slave Province, are subdivided into two lithotectonic domains: a supracrustal domain, which consists mainly of the Archean Yellowknife Supergroup, and a gneiss–granite domain. The latter is composed of gneissic and metaigneous rocks of the Sleepy Dragon Complex, determined to be basement to the Yellowknife Supergroup, and granite plutons, including the 2641 ± 3.5 Ma Suse Lake granite and the 2583.5 ± 1 Ma Morose Granite. Volcanic rocks of the Cameron River Belt and greywacke–mudstone turbiditic metasedimentary rocks of the Burwash Formation constitute the supracrustal domain.A late Archean, amphibolite- to greenschist-facies, ductile to local brittle, high-strain zone separates the domains. Kinematic indicators demonstrate that the zone experienced two kinematically opposed episodes of displacement. The older episode involved pre- to synthermal peak thrusting of the supracrustal rocks over the gneiss–granite domain. Thrusting is kinematically and temporally consistent with late Archean, pre- to synthermal peak, regional contractional deformation. Structural and metamorphic relations and kinematic indicators suggest that thrusting and regional contraction were followed shortly by intrusion of the peraluminous Morose Granite and thereafter by a late syn- to post-thermal peak episode of extension, resulting in tectonic unroofing of the gneiss–granite domain.The sequential history of contraction and attendant regional metamorphism, granite intrusion, and, ultimately, extensional collapse, which is documented in the Archean rocks in the area, is a common feature of Phanerozoic collisional orogens. Moreover, the tectonic history of the gneiss–granite domain is broadly similar to the evolution of metamorphic core complexes in the North American Cordillera.



1993 ◽  
Vol 30 (1) ◽  
pp. 29-41 ◽  
Author(s):  
J. K. Mortensen

U–Pb zircon ages for 15 volcanic and plutonic units in the Noranda and Kirkland Lake areas help constrain the history of volcanism, plutonism, sedimentation, and deformation in the south-central part of the Abitibi belt. Volcanism occurred over an interval of at least 50 Ma, beginning with the deposition of the volcanic and volcaniclastic units within the Pacaud Structural Complex at 2747 Ma. Following a period of apparent quiescence, magmatism resumed at 2730–2725 Ma with the eruption of volcanic rocks in the Normétal and Lac Abitibi area. From 2715 until about 2698 Ma, volcanism occurred sporadically throughout much of the area, culminating in the eruption of the Blake River Group from 2703 to 2698 Ma. Several large intrusive bodies yield ages that indicate that they are plutonic equivalents of the Blake River Group. Plutons that are considered to have been emplaced during the Kenoran orogeny give ages that are only slightly younger than the youngest volcanic units of the Blake River Group, emphasizing the very rapid onset of Kenoran deformation following the cessation of volcanic activity.The Cléricy syenite, dated at 2682 ± 3 Ma, postdates the main period of Kenoran deformation in this area and intrudes sedimentary rocks of the Kewagama Group which contain detrital zircons as young as 2687 Ma. These data suggest that the Kewagama Group is the same age as late sedimentary sequences such as the Timiskaming Group and may have been deposited in a similar tectonic setting.



1874 ◽  
Vol 1 (5) ◽  
pp. 205-210
Author(s):  
Edward Hull

Carboniferous Period.—The Lower Carboniferous rocks, both of the North of England, of Scotland, and of Ireland, afford examples of contemporaneous volcanic action of considerable intensity. The so-called “toad-stones” of Derbyshire, and the great sheets of melaphyre, porphyrite, and ashes of the central valley of Scotland, forming the Kilpatrick, Campsie, and Dairy Hills, appear to have been erupted over the bed of the same sea as that in which were poured out similar materials in County Limerick, forming the well-known Carboniferous volcanic rocks of “the Limerick Basin.” These rocks have been already so fully described by several observers, that I shall confine myself to a very short description, such as is essential to the brief history of volcanic action which I am here endeavouring to draw up.



2007 ◽  
Vol 44 (3) ◽  
pp. 389-412 ◽  
Author(s):  
Pete Hollings ◽  
Philip Fralick ◽  
Brian Cousens

The Mesoproterozoic 1108–1105 Ma Osler Group, a 3 km thick succession of basaltic flows and sedimentary units on the north shore of Lake Superior, is among the oldest expressions of the Midcontinent Rift. Basal sediments of the Simpson Island Formation (new name) deposited by braided fluvial systems record westward transport of debris eroded from local Archean and Proterozoic rock units. Strata deposited by this fluvial system are intercalated with, and overlain by, ocean-island basalt (OIB)-like basalts, which become increasingly contaminated up section (εNd(1100Ma) = +0.3 to –5.3). The light rare-earth element (LREE) enriched (La/Smn = 1.5–3.9) and heavy REE (HREE) fractionated (Gd/Ybn = 1.5–3.7) subaerial flows are divisible into two units that correlate with other sections of the Osler Group to the east, but simple correlations with more distant sequences are difficult. The volcanic rock dominated portion of the succession is overlain by a thin (25 m thick) conglomerate–sandstone assemblage representing southeast progradation of an alluvial fan in a semi-arid climatic setting. Clast lithologies and geochemistry indicate no extra-rift detritus was delivered from the hinterland of the fan. Various lines of evidence in both volcanic and sedimentary rocks support a scenario where early, pre-1108 Ma, subsidence along a north–south axis from the western arm of the rift to the Nipigon Embayment was replaced by subsidence along the east–west rift axis between 1108 and 1105 Ma.



1976 ◽  
Vol 13 (6) ◽  
pp. 737-748 ◽  
Author(s):  
Manfred M. Kehlenbeck

In the de Courcey – Smiley Lakes Area, the boundary between the Quetico and Wabigoon Belts is expressed by a sequence of pelitic to semi-pelitic schists and gneisses. At the present level of erosion, these metasedimentary rocks are in contact with granodioritic gneisses, granites, and pegmatites, which are exposed to the south.To the north of this area, regional metamorphism of volcanic and sedimentary rocks has resulted in greenschist facies assemblages, which characterize the Wabigoon Belt in general. In the boundary zone, the metamorphic grade increases southward toward de Courcey and Smiley Lakes.Formation of three distinct foliation surfaces was accompanied by syn-tectonic as well as post-tectonic recrystallization, producing polymetamorphic schists.In the boundary zone, mineral assemblages comprising andalusile, sillimanite, cordierite, garnet. biotite, and muscovite form a facies series of the Abukuma type.The boundary between the Quetico and Wabigoon Belts in this area is a complex zone in which rocks of both belts have been reconstituted by multiple-phase metamorphism and partial melting.



1999 ◽  
Vol 36 (2) ◽  
pp. 293-312 ◽  
Author(s):  
Kevin M Ansdell ◽  
Karen A Connors ◽  
Richard A Stern ◽  
Stephen B Lucas

Lithological and structural mapping in the east Wekusko Lake area of the Flin Flon Belt, Trans-Hudson Orogen, suggested an intimate relationship between magmatism, fluvial sedimentation, and initiation of fold and thrust belt deformation. Conventional U-Pb geochronology of volcanic rocks in fault-bounded assemblages provides a minimum age of 1876 ± 2 Ma for McCafferty Liftover back-arc basalts, and ages of between 1833 and 1836 Ma for the Herb Lake volcanic rocks. A rhyolite which unconformably overlies Western Missi Group fluvial sedimentary rocks has complex zircon systematics. This rock may be as old as about 1856 Ma or as young as 1830 Ma. The sedimentary rocks overlying this rhyolite are locally intercalated with 1834 Ma felsic volcanic rocks, and yield sensitive high resolution ion microprobe (SHRIMP) U-Pb and Pb-evaporation detrital zircon ages ranging from 1834 to 2004 Ma. The Eastern Missi Group is cut by an 1826 ± 4 Ma felsic dyke, and contains 1832-1911 Ma detrital zircons. The dominant source for detritus in the Missi Group was the Flin Flon accretionary collage and associated successor arc rocks. The fluvial sedimentary rocks and the Herb Lake volcanic rocks were essentially coeval, and were then incorporated into a southwest-directed fold and thrust belt which was initiated at about 1840 Ma and active until at least peak regional metamorphism.



1987 ◽  
Vol 24 (4) ◽  
pp. 813-825 ◽  
Author(s):  
Ronald Doig

The Churchill Province north of the Proterozoic Cape Smith volcanic fold belt of Quebec may be divided into two parts. The first is a broad antiform of migmatitic gneisses (Deception gneisses) extending north from the fold belt ~50 km to Sugluk Inlet. The second is a 20 km wide zone of high-grade metasedimentary rocks northwest of Sugluk Inlet. The Deception gneisses yield Rb–Sr isochron ages of 2600–2900 Ma and initial ratios of 0.701–0.703, showing that they are Archean basement to the Cape Smith Belt. The evidence that the basement rocks have been isoclinally refolded in the Proterozoic is clear at the contact with the fold belt. However, the gneisses also contain ubiquitous synclinal keels of metasiltstone with minor metapelite and marble that give isochron ages less than 2150 Ma. These ages, combined with low initial ratios of 0.7036, show that they are not part of the basement, as the average 87Sr/86Sr ratio for the basement rocks was about 0.718 at that time.The rocks west of Sugluk Inlet consist mainly of quartzo-feldspathic sediments, quartzites, para-amphibolites, marbles, and some pelite and iron formation. In contrast to the Proterozoic sediments in the Deception gneisses, these rocks yield dates of 3000–3200 Ma, with high initial ratios of 0.707–0.714. These initial ratios point to an age (or a provenance) much greater than that of the Archean Deception gneisses. The rocks of the Sugluk terrain are intruded by highly deformed sills of granitic rocks with ages of about 1830 Ma, demonstrating again the extent and severity of the Proterozoic overprint. The eastern margin of this possibly early Archean Sugluk block is a discontinuity in age, lithology, and geophysical character that could be a suture between two Archean cratons. It is not known if such a suturing event is of Archean age, or if it is related to the deformation of the Cape Smith Fold Belt.Models of evolution incorporating both the Cape Smith Belt and the Archean rocks to the north need to account for the internal structure of the fold belt, the continental affinity of many of the volcanic rocks, the continuity of basement around the eastern end of the belt, and the increase in metamorphism through the northern part of the belt into a broad area to the north. The Cape Smith volcanic rocks may have been extruded along a continental rift, parallel to a continental margin at Sugluk. Continental collison at Sugluk would have thrust the older and higher grade Sugluk rocks over the Deception gneisses, produced the broad Deception antiform, and displaced the Cape Smith rocks to the south in a series of north-dipping thrust slices.



1984 ◽  
Vol 21 (1) ◽  
pp. 35-52 ◽  
Author(s):  
Neil A. Mathieson ◽  
C. Jay Hodgson

The area of the East South "C" (ESC) orebody of the Dickenson mine, Red Lake, consists of variably altered and mineralized basalt, basaltic volcaniclastic rocks, minor sulphidic iron formation, and a series of mainly postdeformation dykes. Except for the dykes, the rocks are in general well foliated. The macroscopic structural geometry of the stratiform rocks has been determined to a large extent by movement on schistosity-parallel faults.Three broad types of mineralization or alteration are recognized: an Na–Ca–Mg depletion with associated Fe–Mn enrichment controlled by primary permeable structures in basalt; a series of carbonate and quartz or "chert" veins emplaced into fissures; and auriferous silicified and sulphidized zones controlled by vein-filled fractures. The last is the main mineralization type in the ESC orebody on the 24th level of the mine, which was the focus of this study. Although all mineralization types occur within the mine, they are not directly associated either temporally or spatially on a mesoscopic scale. All, however, appear to have been overprinted by or formed synchronously with the amphibolite-facies metamorphism.A rich variety of metamorphic mineral assemblages occurs in the volcanic rocks because of the chemical effect of pre- or synmetamorphic hydrothermal alteration. These assemblages and the composition and mineral associations of arsenopyrite in the ESC orebody closely constrain the conditions of metamorphism to 520–540 °C and 3.8–4.2 kbar (380–420 MPa) fluid pressure.



Sign in / Sign up

Export Citation Format

Share Document