Kimberlite from Somerset Island, District of Franklin, N.W.T.

1973 ◽  
Vol 10 (3) ◽  
pp. 384-393 ◽  
Author(s):  
Roger H. Mitchell ◽  
Peter Fritz

A new occurrence of kimberlite located on Somerset Island in the Canadian Arctic is described. The intrusion is in the form of a diatreme showing evidence of fluidization and is emplaced in Ordovician sediments. Kimberlitic breccia containing rounded xenoliths of country rock and massive kimberlite are the dominant rock types. The massive kimberlite contains phenocrysts of olivine (Fo90–Fo93), chrome-pyrope (7–12 mol.% uvarovite), and phlogopite together with xenocrysts of pyrope-almandine (28–36 mol.% pyrope, 58–64 mol.% almandine) set in a groundmass of olivine (Fo89.5), magnetite, perovskite, and serpentine. Abundant dolomitic carbonate, which replaces the silicate groundmass, is considered to be primary and to represent a late stage immiscible phase. Emplacement of the diatreme is thought to have been controlled by a crustal lineament defined by the Boothia Uplift. An Upper Ordovician or Lower Silurian age is postulated on the basis of the lack of country rock xenoliths older than Upper Ordovician age within the diatreme.


1987 ◽  
Vol 24 (4) ◽  
pp. 752-759 ◽  
Author(s):  
J. B. Murphy

Upper Ordovician to Lower Silurian rocks in the Antigonish Highlands consist of interlayered basalts, rhyodacites, arkoses, and conglomerates overlain by a thick sequence of marine clastic rocks and minor rhyolites. The stratigraphy documents a marine transgression. The volcanic rocks were deposited in a within-plate, continental, extensional environment. The basalts display alkalic and tholeiitic affinities, and the rhyodacites were formed by anatexis of the crust. The origin of the younger rhyolites is not clear: they are compositionally distinct from the rhyodacites but may be related to them as late-stage differentiates. At present, it is not possible to evaluate whether the tectonic setting and magmatic affinities are regionally or locally controlled.The geological history is very similar to that of Lower Silurian rocks immediately north of the Antigonish Highlands at Arisaig. In the simplest sense, this indicates these areas may have been juxtaposed prior to the Late Ordovician and limits cumulative post-Silurian movement on the boundary (Hollow) fault to about 40 km.



Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Wen ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
...  

The upper Ordovician-lower Silurian shale has always been the main target of marine shale gas exploration in southern China. However, the shale gas content varies greatly across different regions. The organic matter content is one of the most important factors in determining gas content; therefore, determining the enrichment mechanisms of organic matter is an important problem that needs to be solved urgently. In this paper, upper Ordovician-lower Silurian shale samples from the X-1 and Y-1 wells that are located in the southern Sichuan area of the upper Yangtze region and the northwestern Jiangxi area of the lower Yangtze region, respectively, are selected for analysis. Based on the core sample description, well logging data analysis, mineral and elemental composition analysis, silicon isotope analysis, and TOC (total organic carbon) content analysis, the upper Ordovician-lower Silurian shale is studied to quantitatively calculate its content of excess silicon. Subsequently, the results of elemental analysis and silicon isotope analysis are used to determine the origin of excess silicon. Finally, we used U/Th to determine the characteristics of the redox environment and the relationship between excess barium and TOC content to judge paleoproductivity and further studied the mechanism underlying sedimentary organic matter enrichment in the study area. The results show that the excess silicon from the upper Ordovician-lower Silurian shale in the upper Yangtze area is derived from biogenesis. The sedimentary water body is divided into an oxygen-rich upper water layer that has higher paleoproductivity and a strongly reducing lower water that is conducive to the preservation of sedimentary organic matter. Thus, for the upper Ordovician-lower Silurian shale in the upper Yangtze region, exploration should be conducted in the center of the blocks with high TOC contents and strongly reducing water body. However, the excess silicon in the upper Ordovician-lower Silurian shale of the lower Yangtze area originates from hydrothermal activity that can enhance the reducibility of the bottom water and carry nutrients from the crust to improve paleoproductivity and enrich sedimentary organic matter. Therefore, for the upper Ordovician-lower Silurian shale in the lower Yangtze region, exploration should be conducted in the blocks near the junction of the two plates where hydrothermal activity was active.



Minerals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 283 ◽  
Author(s):  
Kun Zhang ◽  
Zhuo Li ◽  
Shu Jiang ◽  
Zhenxue Jiang ◽  
Ming Wen ◽  
...  


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 495 ◽  
Author(s):  
Yizhou Huang ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
...  

The effect of organic matter on hydrocarbon potential, storage space, and gas content of shale is well-known. Additionally, present-day content of sedimentary organic matter in shale is controlled by depositional and preservation processes. Therefore, a study of the enrichment mechanisms of sedimentary organic matter provides a scientific basis for the determination of favorable areas of shale gas. In this study the Upper Ordovician Xinkailing Fm. and the first member of the Lower Silurian Lishuwo Fm. were examined. Stratigraphic sequences were identified through conventional logs and elemental capture spectrum data. Oxygen isotope analysis was applied to recover paleotemperature of seawater in the study area. The excess silicon content was calculated and the origin of the silica was determined by the Fe-Al-Mn ternary plot. The enrichment mechanism of organic matter was analyzed by two aspects: redox conditions and paleoproductivity. As a result, the stratigraphic interval was divided into two 3rd-order sequences. Through oxygen isotope, the paleotemperature of seawater was 62.7–79.2 °C, providing evidence of the development of hydrothermal activity. Analysis of excess siliceous minerals identified two siliceous mineral origins: terrigenous and hydrothermal. It also revealed an upwards decreasing tendency in hydrothermal activity intensity. Strong hydrothermal activity during the Late Ordovician, recognized as TST1, formed a weak-oxidizing to poor-oxygen environment with high paleoproductivity, which promoted organic matter enrichment. During the Late Ordovician to the Early Silurian, identified as RST1, TST2, and RST2, weakening hydrothermal activity caused the decline of paleoproductivity and increased oxidation of bottom waters, leading to a relative decrease of organic matter content in the shale. Therefore, favorable areas of shale gas accumulation in the Upper Ordovician and Lower Silurian are determined stratigraphically as the TST1, with a high total organic carbonate content. Geographically, the hydrothermally-active area near the plate connection of the Yangtze and the Cathaysian is most favorable.





1987 ◽  
Vol 35 ◽  
pp. 191-202
Author(s):  
M. J. Melchin

Ashgill age graptolites have been collected from seven sections of the Cape Phillips Formation across most of its outcrop belt. The earliest graptolite zone recognisable is that of Orthograptus fastigatus. It is correla­ted with the Dicellograptus ornatus · Zone of the northern Canadian Cordilllera and the Dicellograptus complexus Subzone of the Dicel/ograptus anceps Zone of Great Britain although no dicellograptids have been found at any of the present sections. The overlying zone is that of Paraorthograptus pacificus, an ea­sily recognisable zone around much of the world. Graptolites of the C/imacograptus extraordinarius and Glyptograptus persculptus zones appear to be en­tirely absent from this formation. This is attributed to the Late Ordovician glaciation which has induced regression and submarine erosion in many areas worldwide. The earliest recognisable Silurian zone varies from section to section due to buried or barren intervals and/or hiatuses of varying length. The Parakidograptus acuminatus Zone has been recognised at only one section. At the others, the Atavograptus atavus, the Lagarograptus acinaces-Coronograptus gregarius, the Monograptus convolutus or the Monograptus spiralis Zone (s.1.) are the earliest recognisable Silurian fau­nas. Relatively low fauna! diversities in the Ashgill and lowest Llandovery portion of the section and the to­tal lack of dicellograptids are interpreted to be due to relatively shallow water, outer shelf or carbonate ramp depositional environment.



2021 ◽  
pp. M57-2016-27
Author(s):  
Denis Lavoie ◽  
Nicolas Pinet ◽  
Shunxin Zhang

AbstractThe Foxe Platform and Basin Tectono-Sedimentary Element is an ovoid-shaped, predominantly marine basin located in the Canadian Arctic. The Paleozoic sedimentary succession (Cambrian to Silurian) unconformably overlies the Precambrian basement and reaches a maximum measured thickness of slightly over 500 metres in the only exploration well drilled in this basin. The Lower Paleozoic Foxe Platform and Basin Tectono-Sedimentary Element is surrounded by Precambrian basement and by the Paleozoic Arctic Platform to the north and by the Paleozoic-Mesozoic (?) Hudson Bay Strait Platform and Basin to the south. The Paleozoic succession consists of a Cambrian clastic-dominated interval overlain by Ordovician to lower Silurian predominantly shallow marine carbonate. Other than a single well drilled in the northern part of the basin, no subsurface information is available. Thermally immature Upper Ordovician organic matter rich calcareous black shales have been mapped on the onshore extension of the basin to the southeast. Potential hydrocarbon reservoirs consist of Cambrian porous coarse-grained clastics as well as Upper Ordovician dolostones and reefs.



Author(s):  
Wolf Uwe Reimold ◽  
Toni Schulz ◽  
Stephan König ◽  
Christian Koeberl ◽  
Natalia Hauser ◽  
...  

ABSTRACT This contribution is concerned with the debated origin of the impact melt rock in the central uplift of the world’s largest confirmed impact structure—Vredefort (South Africa). New major- and trace-element abundances, including those of selected highly siderophile elements (HSEs), Re-Os isotope data, as well as the first Se isotope and Se-Te elemental systematics are presented for the felsic and mafic varieties of Vredefort impact melt rock known as “Vredefort Granophyre.” In addition to the long-recognized “normal” (i.e., felsic, >66 wt% SiO2) granophyre variety, a more mafic (<66 wt% SiO2) impact melt variety from Vredefort has been discussed for several years. The hypothesis that the mafic granophyre was formed from felsic granophyre through admixture (assimilation) of a mafic country rock component that then was melted and assimilated into the superheated impact melt has been pursued here by analysis of the two granophyre varieties, of the Dominion Group lava (actually metalava), and of epidiorite mafic country rock types. Chemical compositions, including high-precision isotope dilution–derived concentrations of selected highly siderophile elements (Re, Os, Ir, Pt, Se, Te), and Re-Os and Se isotope data support this hypothesis. A first-order estimate, based on these data, suggests that some mafic granophyre may have resulted from a significant admixture (assimilation) of epidiorite to felsic granophyre. This is in accordance with the findings of an earlier investigation using conventional isotope (Sr-Nd-Pb) data. Moreover, these outcomes are in contrast to a two-stage emplacement model for Vredefort Granophyre, whereby a mafic phase of impact melt, derived by differentiation of a crater-filling impact melt sheet, would have been emplaced into earlier-deposited felsic granophyre. Instead, all chemical and isotopic evidence so far favors formation of mafic granophyre by local assimilation of mafic country rock—most likely epidiorite—by a single intrusive impact melt phase, which is represented by the regionally homogeneous felsic granophyre.



Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Kun Zhang ◽  
Jun Peng ◽  
Weiwei Liu ◽  
Bin Li ◽  
Qingsong Xia ◽  
...  

Organic matter is the material basis for shales to generate hydrocarbon, as well as the main reservoir space and seepage channel for shale gas. When the thermal evolution degree is consistent, the organic carbon content in present shales is subject to the abundance of primitive sedimentary organic matter. Deep geofluids significantly influence the sedimentary organic matter’s enrichment, but the mechanism remains unclear. This paper is aimed at determining how hydrothermal and volcanic activities affected the enrichment of sedimentary organic matter by studying lower Cambrian shales in the lower Yangtze region and upper Ordovician-lower Silurian shales. Oxidation-reduction and biological productivity are used as indicators in the study. The result shows that hydrothermal or volcanic activities affected the enrichment of sedimentary organic matter by influencing climate changes and the nutrients’ sources on the waterbody’s surface and reducing water at the bottom. In the lower Cambrian shales of the Wangyinpu Formation in the lower Yangtze region, hydrothermal origin caused excess silicon. During the sedimentary period of the lower and middle-upper Wangyinpu Formation, vigorous hydrothermal activities increased the biological productivity on the waterbody’s surface and intensified the reducibility at the bottom of the waterbody, which enabled the rich sedimentary organic matter to be well preserved. During the sedimentary period of the lower upper Ordovician Wufeng Formation and the lower Silurian Longmaxi Formation in the upper Yangtze region, frequent volcanic activities caused high biological productivity on the waterbody surface and strong reducibility at the bottom of the waterbody. As a result, the abundant organic matter deposited from the water surface can be well preserved. During the sedimentary period of the upper Longmaxi Formation, volcanic activities died down gradually then disappeared, causing the biological productivity on the water surface to decrease. Besides, the small amount of organic matter deposited from the water surface was destroyed due to oxidation.



Sign in / Sign up

Export Citation Format

Share Document