Depositional environments along a carbonate ramp to slope transition in the Silurian of Washington Land, North Greenland

1983 ◽  
Vol 20 (3) ◽  
pp. 473-499 ◽  
Author(s):  
John M. Hurst ◽  
Finn Surlyk

During the earliest Silurian, subsidence and tilting of a relatively flat carbonate platform produced a homoclinal carbonate ramp transitional to the slope of a deep-water basin. Further subsidence, associated with a flexure, differentiated the slope from the carbonate ramp. Subsequently, a linear reef tract developed along part of the flexure, producing a steep reef-scarp slope at the outer homoclinal carbonate ramp margin and accentuating the initial basin slope. Isolated reefs also developed on the slope. The reef tract, which influenced slope depositional environments considerably, marked the transition from the shallow homoclinal carbonate ramp facies to the deeper slope environments. Background slope sedimentation was primarily terrigenous mudstone deposited out of suspension and by very dilute muddy turbidity flows. Superimposed were calcarenites and conglomerates, derived from the carbonate ramp margin and reefs, deposited by low- to high-density turbidity flows, debris flows, and possibly grain and liquefied flows. Sedimentation patterns along the incipient slope reflect both shallow carbonate ramp and deep basinal influences. With continued subsidence and differentiation of slope and ramp, slumping of carbonate blocks occurred at the ramp margin. Disorganized talus wedges developed as circular fringes around reefs on the slope, and a fine-grained talus wedge developed along the base of the main precipitous reef scarp at the ramp margin. A large channel cut down and across the slope and eventually became choked with ramp-margin reef and top-of-slope material. Finally, abrupt subsidence, which generated an olistostrome containing a minimum of [Formula: see text] of debris, drowned all reefs and the slope became essentially starved of resedimented carbonate debris.

1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


Author(s):  
Jon R. Ineson ◽  
John S. Peel

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Ineson, J. R., & Peel, J. S. (1997). Cambrian shelf stratigraphy of North Greenland. Geology of Greenland Survey Bulletin, 173, 1-120. https://doi.org/10.34194/ggub.v173.5024 _______________ The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.The Lower Palaeozoic Franklinian Basin is extensively exposed in northern Greenland and the Canadian Arctic Islands. For much of the early Palaeozoic, the basin consisted of a southern shelf, bordering the craton, and a northern deep-water trough; the boundary between the shelf and the trough shifted southwards with time. In North Greenland, the evolution of the shelf during the Cambrian is recorded by the Skagen Group, the Portfjeld and Buen Formations and the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups; the lithostratigraphy of these last three groups forms the main focus of this paper. The Skagen Group, a mixed carbonate-siliciclastic shelf succession of earliest Cambrian age was deposited prior to the development of a deep-water trough. The succeeding Portfjeld Formation represents an extensive shallow-water carbonate platform that covered much of the shelf; marked differentiation of the shelf and trough occurred at this time. Following exposure and karstification of this platform, the shelf was progressively transgressed and the siliciclastics of the Buen Formation were deposited. From the late Early Cambrian to the Early Ordovician, the shelf showed a terraced profile, with a flat-topped shallow-water carbonate platform in the south passing northwards via a carbonate slope apron into a deeper-water outer shelf region. The evolution of this platform and outer shelf system is recorded by the Brønlund Fjord, Tavsens Iskappe and Ryder Gletscher Groups. The dolomites, limestones and subordinate siliciclastics of the Brønlund Fjord and Tavsens Iskappe Groups represent platform margin to deep outer shelf environments. These groups are recognised in three discrete outcrop belts - the southern, northern and eastern outcrop belts. In the southern outcrop belt, from Warming Land to south-east Peary Land, the Brønlund Fjord Group (Lower-Middle Cambrian) is subdivided into eight formations while the Tavsens Iskappe Group (Middle Cambrian - lowermost Ordovician) comprises six formations. In the northern outcrop belt, from northern Nyeboe Land to north-west Peary Land, the Brønlund Fjord Group consists of two formations both defined in the southern outcrop belt, whereas a single formation makes up the Tavsens Iskappe Group. In the eastern outcrop area, a highly faulted terrane in north-east Peary Land, a dolomite-sandstone succession is referred to two formations of the Brønlund Fjord Group. The Ryder Gletscher Group is a thick succession of shallow-water, platform interior carbonates and siliciclastics that extends throughout North Greenland and ranges in age from latest Early Cambrian to Middle Ordovician. The Cambrian portion of this group between Warming Land and south-west Peary Land is formally subdivided into four formations.


1988 ◽  
Vol 62 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


2016 ◽  
Vol 8 (1) ◽  
pp. 45-51
Author(s):  
Szabolcs Borka

AbstractThe aim of this study was to examine the relationship between structural elements and the so-called genetic lithofacies in a clastic deep-water depositional system. Process-sedimentology has recently been gaining importance in the characterization of these systems. This way the recognized facies attributes can be associated with the depositional processes establishing the genetic lithofacies. In this paper this approach was presented through a case study of a Tertiary deep-water sequence of the Pannonian-basin.Of course it was necessary to interpret the stratigraphy of the sequences in terms of “general” sedimentology, focusing on the structural elements. For this purpose, well-logs and standard deep-water models were applied.The cyclicity of sedimentary sequences can be easily revealed by using Markov chains. Though Markov chain analysis has broad application in mainly fluvial depositional environments, its utilization is uncommon in deep-water systems. In this context genetic lithofacies was determined and analysed by embedded Markov chains. The randomness in the presence of a lithofacies within a cycle was estimated by entropy tests (entropy after depositional, before depositional, for the whole system). Subsequently the relationships between lithofacies were revealed and a depositional model (i.e. modal cycle) was produced with 90% confidence level of stationarity. The non-randomness of the latter was tested by chi-square test.The consequences coming from the comparison of “general” sequences (composed of architectural elements), the genetic-based sequences (showing the distributions of the genetic lithofacies) and the lithofacies relationships were discussed in details. This way main depositional channel has the best, channelized lobes have good potential hydrocarbon reservoir attributes, with symmetric alternation of persistent fine-grained sandstone (Facies D) and muddy fine-grained sandstone with traction structures (Facies F)


Geologija ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 173-188
Author(s):  
Luka GALE ◽  
Duje KUKOČ ◽  
Boštjan ROŽIČ ◽  
Anja VIDERVOL

The uppermost Ladinian to Lower Jurassic Zatrnik Formation is the lithostratigraphic unit of the Mesozoic deeper marine Bled Basin. The uppermost part of the Zatrnik Formation and the transition into the overlying Ribnica Breccia was logged at the Zajamniki mountain pasture on the Pokljuka mountain plateau in the Julian Alps. The lowermost part the section belongs to the “classical” Zatrnik Formation and is dominated by beige micritic limestone and fine-grained calcarenite. Foraminifers Siphovalvulina, ?Everticyclammina, ?Mesoendothyra and ?Pseudopfenderina are present, indicating Early Jurassic age. The beige limestone is followed by light pink limestone of the uppermost Zatrnik Formation. Slumps are common in this interval, and crinoids are abundant. Alongside some species already present in beds lower in the succession, Meandrovoluta asiagoensis Fugagnoli & Rettori, Trocholina sp., Valvulinidae, small Textulariidae, Lagenida, and small ?Ophthalmidium alsooccur in this interval. Resedimented limestone predominates through the studied part of the Zatrnik Formation, indicating deposition on the slope or at the foot of the slope of the basin. The switch to crinoid-rich facies within the slumped interval of the Zatrnik Formation may reflect accelerated subsidence of the margins of the Julian Carbonate Platform in the Pliensbachian. The Zatrnik Formation is followed by the formation of the Pliensbachian (?) Ribnica Breccia. Impregnations of ferromanganese oxides, violet colour, and an increase in clay content are characteristic. The foraminiferal assemblage consists of Lenticulina, small elongated Lagenida, and epistominids. Individual beds of the Ribnica Breccia were deposited via debris flows. Enrichments in ferromanganese oxides point to slower sedimentation.


Facies ◽  
2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Michael A. J. Vitzthum ◽  
Hans-Jürgen Gawlick ◽  
Reinhard F. Sachsenhofer ◽  
Stefan Neumeister

AbstractThe up to 450 m-thick Upper Jurassic Lemeš Formation includes organic-rich deep-water (max. ~ 300 m) sedimentary rocks deposited in the Lemeš Basin within the Adriatic Carbonate Platform (AdCP). The Lemeš Formation was investigated regarding (1) bio- and chemostratigraphy, (2) depositional environment, and (3) source rock potential. A multi-proxy approach—microfacies, Rock–Eval pyrolysis, maceral analysis, biomarkers, and stable isotope ratios—was used. Based on the results, the Lemeš Formation is subdivided from base to top into Lemeš Units 1–3. Deposition of deep-water sediments was related to a late Oxfordian deepening event causing open-marine conditions and accumulation of radiolarian-rich wackestones (Unit 1). Unit 2, which is about 50 m thick and Lower early Kimmeridgian (E. bimammatum to S. platynota, ammonite zones) in age, was deposited in a restricted, strongly oxygen-depleted basin. It consists of radiolarian pack- and grainstones with high amounts of kerogen type II-S organic matter (avg. TOC 3.57 wt.%). Although the biomass is predominantly marine algal and bacterial in origin, minor terrestrial organic matter that was transported from nearby land areas is also present. The overlying Unit 3 records a shallowing of the basin and a return to oxygenated conditions. The evolution of the Lemeš Basin is explained by buckling of the AdCP due to ophiolite obduction and compressional tectonics in the Inner Dinarides. Lemeš Unit 2 contains prolific oil-prone source rocks. Though thermally immature at the study location, these rocks could generate about 1.3 t of hydrocarbon per m2 surface area when mature.


2016 ◽  
Vol 86 (6) ◽  
pp. 712-733 ◽  
Author(s):  
María I. Sierra-Rojas ◽  
Roberto S. Molina-Garza ◽  
Timothy F. Lawton

Abstract: Lower Cretaceous depositional systems of southwestern Oaxaquia, in south-central Mexico, were influenced by initiation of a continental arc on mainland Mexico and subsequent accretion of the Guerrero composite arc terrane to mainland Mexico. The Atzompa Formation, defined herein, which crops out in the Sierra de Tentzo, constitutes a succession of conglomerate, sandstone, siltstone, and limestone with Early Cretaceous fauna and detrital zircon maximum depositional ages that range 126–123 Ma (late Barremian to early Aptian). The lower part of the Atzompa records a transition from alluvial to deep lacustrine depositional environments, suggesting the early stages of an extensional basin; overlying deposits of anabranching axial fluvial systems that flowed to the NE–SE accumulated after a period of rapid subsidence in the Tentzo basin, also formerly undescribed. Fluvial facies grade up-section to tidal deposits overlain in turn by a carbonate ramp succession that contains late Barremian to early Aptian fossils. The ramp deposits of the uppermost Atzompa Formation are overlain on a sharp contact by basinal carbonates of early Albian age.The Tentzo basin, formed due to crustal extension of the overriding plate in a backarc setting, was characterized by very high rates of sedimentation (3.6 mm/yr) during the early stages of basin formation (rift initiation and rift climax), and slower rates during the development of tidal systems and the carbonate ramp (post-rift stage). Regional and local subsidence took place in the backarc region of the Zicapa magmatic arc, which was established in the western margin of Mexico by Hauterivian time. Abrupt deepening following Atzompa Formation deposition is attributed to flexural subsidence related to collision of the Guerrero composite volcanic terrane with the western margin of Mexico. Following late Aptian accretion of the Guerrero terrane to Oaxaquia, the carbonate basin eventually shallowed to become a carbonate platform that faced the Gulf of Mexico.


GeoArabia ◽  
2013 ◽  
Vol 18 (4) ◽  
pp. 49-80
Author(s):  
Afshin Zohdi ◽  
Reza Mousavi-Harami ◽  
Seyed Ali Moallemi ◽  
Asadollah Mahboubi ◽  
Adrian Immenhauser

ABSTRACT We document and discuss the results of detailed fieldwork, facies analysis and the subsequent integration of paleoecological evidence from the Middle Eocene carbonate ramp succession in the southeast Zagros Basin (Jahrum Formation). A combination of a sea-level fall and tectonic and diapiric basement uplift favored the initiation of the Jahrum carbonate platform. The lower portions are affected by pervasive, probably early diagenetic dolomitization, whilst the upper Jahrum consists mainly of limestone. Here, the focus is on the limestone portions of the Jahrum Formation. Based on the abundance, diversity and rapid evolutionary turnover of the alveolinids and nummulitids, the limestone intervals of the Jahrum Formation are interpreted for the upper Middle Eocene (Bartonian). The Jahrum Formation is capped by a major unconformity and overlain by the Lower Oligocene mixed clastic/carbonate Razak Formation. Based on data from field sections, eight facies associations and a series of sub-types have been established, which correspond to inner-, middle-and outer-ramp depositional environments. In their overall context, these data show a southward-dipping inner-ramp-to-basin transect. Towards the Coastal Fars (e.g. Hulur-01 Well) the Jahrum grades laterally into deep-marine Pabdeh foredeep shale units. Based on facies analysis and paleoecological evidence from larger benthic foraminifera, a major transgressive-regressive pattern is recognized in all outcrop sections of the Jahrum. The lowermost stratigraphic units of the formation are here interpreted as a distally steepened ramp. Evidence comes from abundant allochthonous shallow-water facies in the distal, deeper-ramp setting. Shallow-water carbonate clasts were exported towards the basin, a feature that is probably linked to relative sea-level fall control. Furthermore, local to regional basement instabilities by salt diapir-related basement reorganization was arguably of significance. Upsection, evidence is found that the ramp system evolved from a distally steepened to a homoclinal geometry with an overall very gentle slope geometry during the Late Bartonian. The data shown here are significant for those concerned with the Paleogene evolution of the southeast Zagros Basin and provide a well-exposed case example of a Middle Eocene carbonate ramp factory.


Sign in / Sign up

Export Citation Format

Share Document