U–Pb zircon and sphene geochronology of a composite Archean granitoid batholith, Favourable Lake area, northwestern Ontario

1985 ◽  
Vol 22 (10) ◽  
pp. 1436-1451 ◽  
Author(s):  
F. Corfu ◽  
T. E. Krogh ◽  
L. D. Ayres

U–Pb zircon and sphene data for several phases of composite batholiths in the Favourable Lake area of the Superior Province indicate two major periods of plutonism separated by a hiatus of over 200 Ma.A trondhjemite, which now forms a metamorphosed remnant within a batholith, was emplaced 2950 ± 5 Ma ago during an early plutonic event. The second and dominant plutonic period occurred between [Formula: see text] and 2711.0 ± 2.0 Ma ago; these are the ages of the earliest and the latest widespread phase of the batholiths, respectively. Ages of 2716.3 ± 1.4 and 2716 ± 4 Ma for zircons of two minor dioritic phases also fall within this interval. Metamorphic zircons about 2730 and 2715 Ma old from another unit of the batholith indicate a temporal correlation between metamorphism and main plutonic pulses.Sphenes from two samples near the margins of the batholiths yield the same age of 2711 ± 2 Ma as coexisting zircons and date the primary crystallization of the rocks. In contrast, sphenes from six samples from the interior of a batholith yield ages of 2680 ± 10 Ma, which are significantly younger than primary ages of 2950–2716 Ma of coexisting zircons. These sphene ages probably record cooling below about 500 °C during a long and complex cooling process.Several of the studied zircon populations exhibit complex discordance patterns reflecting multiple stages of Pb loss. Zircons in rocks predating the 2700–2730 Ma old metamorphic–plutonic event experienced Pb loss during this event, probably by annealing. A second low-grade event apparently caused chemical alteration of high-U zircon domains and Pb loss about 1750 Ma ago. A late stage of Pb loss affected near-surface zircon domains about 600–0 Ma ago.


2007 ◽  
Vol 44 (8) ◽  
pp. 1151-1168 ◽  
Author(s):  
Peter J Barnett

Many previously published studies of the behaviour of Pt and Pd in till and soils have been done in areas of complex stratigraphy or very thin overburden cover, making the interpretation of soil results difficult because of the many variables associated with these settings. At the Lac des Iles mine site in northwestern Ontario, there are excellent exposures of the overburden in a series of exploration trenches. Glacial dispersal trains can be observed in till (C horizon) geochemistry (e.g., Ni, Cr, Cu, and Co). Regional geochemical dispersal trains of elements, such as Ni, Cr, Mg, and Co associated with the North Lac des Iles intrusion, can be detected for about 4 km beyond the western margin of the Mine Block intrusion. Entire dispersal trains range from 5 to 7 km in length and about 1 to 2 km in width. The dispersal of North Lac des Iles intrusion rock fragments tends to mask the response of the Mine Block intrusion. Dispersal trains of Pt and Pd are not well defined and tend to be very short, <1 km in length, due to the initial low concentrations of these elements in C-horizon till samples from the Lac Des Iles area. An exception to this is the Pd dispersal train originating from the high-grade zone that is up to 3 km long. Pd, Pt, Ni, and Cu appear to be moving both within and out of the soil system downslope into surface and shallow groundwater. It is suggested that these elements, to varying degrees, are moving in solution. Airborne contamination from mine operations of the humus has adversely affected the ability to determine the effectiveness of humus sampling for mineral exploration at Lac des Iles. The airborne contamination likely influences the geochemical results from surface water, shallow groundwater, and near-surface organic bog samples, particularly for the elements Pd and Pt.



Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 485
Author(s):  
Rubén Muñoz de Muñoz de Cote-Hernández ◽  
Patricia Briones-Fourzán ◽  
Cecilia Barradas-Ortiz ◽  
Fernando Negrete-Soto ◽  
Enrique Lozano-Álvarez

Achelata (Palinuridae and Scyllaridae) have a flat, transparent, long-lived planktonic larva called phyllosoma, which comprises multiple stages and has a duration from a few weeks (some scyllarids) to >20 months (some palinurids). The larval development of many Achelata occurs in oceanic waters, where conventional plankton nets usually collect the early- to mid-stages but not the later stages, which remain poorly known. We examined the diversity and distribution of mid- and late-stage phyllosomata in the oceanic waters of the Mexican Caribbean, where the swift Yucatan Current is the dominant feature. The plankton samples were collected at night with a large mid-water trawl in autumn 2012 (55 stations) and spring 2013 (34 stations). In total, we obtained 2599 mid- and late-stage phyllosomata (1742 in autumn, 857 in spring) of five palinurids (Panulirus argus, Panulirus guttatus, Panulirus laevicauda, Palinurellus gundlachi, Justitia longimana) and three scyllarids (Parribacus antarcticus, Scyllarides aequinoctialis, Scyllarus chacei). Overall, the mid-stages were ~2.5 times as abundant as the late stages. The palinurids far outnumbered the scyllarids, and P. argus dominated over all the other species, followed at a distance by P. guttatus. The densities of all the species were generally low, with no clear spatial pattern, and the phyllosomata assemblage composition greatly overlapped between seasons. These results suggest the extensive mixing of the organisms entrained in the strong Yucatan Current, which clearly favors the advection of the phyllosomata in this region despite the presence of some local sub-mesoscale features that may favor short-term retention.



Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 34-34
Author(s):  
Marina Feigenson ◽  
Remya Nathan ◽  
Christopher Materna ◽  
Alana Gudelsky ◽  
Evan Lema ◽  
...  

Diseases such as myelodysplastic syndrome (MDS) and myelofibrosis (MF) are characterized by ineffective hematopoiesis resulting in one or multiple cytopenias. Disease-causing defects occur across multiple cell lineages and stages of hematopoiesis, making development of an effective treatment for all patients challenging. Current treatment options to address anemia in these diseases target discreet stages in erythropoiesis, whereas defects leading to ineffective hematopoiesis can occur throughout the pathway. Therefore, a treatment that more globally modulates hematopoiesis has the potential to treat broad patient groups. The TGFβ superfamily plays a key role in regulating hematopoiesis; as signaling via SMAD2/3 activation results in cell quiescence, inhibiting precursors from progressing through later stages of hematopoiesis. KER-050, a modified ActRIIA ligand trap, promotes hematopoiesis through inhibition of ligands that signal though SMAD2/3, including activins and GDFs. In a Phase 1 clinical study, administration of KER-050 to healthy volunteers led to robust, rapid and sustained increases in red blood cells (RBCs), hemoglobin (HGB) and platelets, supporting an effect on the multiple stages of hematopoiesis. Here, we characterize the time course of KER-050-mediated effects on RBC production and changes in erythroid precursor cell populations in mice to characterize the mechanism of action of KER-050 on erythropoiesis. Mice treated with a single dose of a research form of KER-050 (RKER-050, 10mg/kg) had increased RBCs, HGB and hematocrit (HCT) (+8%, +9%, +7%, respectively) 12 hours after administration compared to vehicle-treated mice (VEH), and this effect was further increased on Day 7. There was also a reduction in the number of enucleated erythroid cells in the bone marrow and a parallel increase in the percent of immature reticulocytes (RET) in peripheral blood, suggesting an increased outflux of RET into circulation. This observation is consistent with RKER-050 promoting the maturation of late stage erythroid precursors leading to increases in RBCs, HGB and HCT as early as 12 hours post treatment and remaining 14 days post a single dose. In studies evaluating the effect of RKER-050 on bone marrow erythroid progenitors, a 2-fold increase in late orthochromatic erythroblasts/RETs (EryC) at Days 2 and 7 post-dose was observed. These data are consistent with RKER-050 promoting maturation and release of late-stage erythroid precursors into circulation. RKER-050 also elicited effects on early progenitors. Day 2 post-dose, there was a 2-fold increase in CFU-Es, with a 46% decrease in poly-erythrochromatic/early orthochromatic erythroid precursors (EryB) at Day 4, as compared to VEH. Day 7 post treatment, both CFU-Es and the EryB population returned to VEH levels. The increase in early progenitors appears to replenish the polychromatic erythroblasts (as shown by the return to VEH level of EryB precursors at Day 7), allowing for continued supply of maturing RETs. Consistent with this hypothesis, RKER-050-mediated changes in erythroid precursors continued to Day 14 with significantly increased early progenitor population (BFU-E +24%) and increased late stage erythroid precursors (EryB +40%, EryC 7-fold) while maintaining increased circulating RETs and RBCs. These data demonstrate that the RKER-050 treatment increases early progenitor cells which continue to mature and contribute to the overall upregulation of erythropoietic tone. Surprisingly, RKER-050 treatment resulted in a greater than 2-fold increase in serum levels of erythropoietin (Epo) at Days 4, 7 and 14. These counterintuitive results demonstrate that RKER-050 promotes erythropoiesis while at the same time increasing Epo. This effect may result in a feed-forward effect on the system and result in a sustained upregulation of erythropoietic tone. Overall, these data demonstrate that KER-050 stimulates terminal maturation of late-stage erythroid precursors, expands the early stage precursor population and progresses precursors through erythropoiesis. Additionally, KER-050 increases Epo within the milieu of elevated RBCs. The ability of KER-050 to target multiple stages along the erythropoiesis cascade makes it an appealing therapeutic candidate for diseases that cause anemia due to ineffective erythropoiesis, including MDS and MF, where defects can arise throughout the erythropoietic pathway. Disclosures Feigenson: Keros Therapeutics: Current Employment. Nathan:Keros Therapeutics: Current Employment. Materna:Keros Therapeutics: Current Employment. Gudelsky:Keros Therapeutics: Current Employment. Lema:Keros Therapeutics: Current Employment, Current equity holder in publicly-traded company. Tseng:Mitobridge: Current equity holder in private company; Keros Therapeutics: Current Employment, Current equity holder in publicly-traded company, Patents & Royalties. Fisher:Keros Therapeutics: Current Employment, Current equity holder in publicly-traded company. Seehra:Keros Therapeutics: Current Employment, Current equity holder in publicly-traded company. Lachey:Keros Therapeutics: Current Employment, Current equity holder in publicly-traded company.



Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 397 ◽  
Author(s):  
Alexandre Néron ◽  
Léo Bédard ◽  
Damien Gaboury

The Saint-Honoré carbonatite complex hosts a rare earth element (REE) deposit traditionally interpreted as being produced by late-stage hydrothermal fluids that leached REE from apatite or dolomite found in the early units and concentrated the REE in the late-stage units. New evidence from deeper units suggest that the Fe-carbonatite was mineralized by a combination of both magmatic and hydrothermal crystallization of rare earth minerals. The upper Fe-carbonatite has characteristics typical of hydrothermal mineralization—polycrystalline clusters hosting bastnäsite-(Ce), which crystallized radially from carbonate or barite crystals, as well as the presence of halite and silicification within strongly brecciated units. However, bastnäsite-(Ce) inclusions in primary magmatic barite crystals have also been identified deeper in the Fe-carbonatite (below 1000 m), suggesting that primary crystallization of rare earth minerals occurred prior to hydrothermal leaching. Based on the intensity of hydrothermal brecciation, Cl depletion at depth and greater abundance of secondary fluid inclusions in carbonates in the upper levels, it is interpreted that hydrothermal activity was weaker in this deepest portion, thereby preserving the original magmatic textures. This early magmatic crystallization of rare earth minerals could be a significant factor in generating high-volume REE deposits. Crystallization of primary barite could be an important guide for REE exploration.



Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 25 ◽  
Author(s):  
Yu-heng Jia ◽  
Yan Liu

The Weishan carbonatite-related rare earth element (REE) deposit in China contains both high- and low-grade REE mineralization and is an informative case study for the investigation of magmatic–hydrothermal REE enrichment processes in such deposits. The main REE-bearing mineral is bastnäsite, with lesser parisite and monazite. REE mineralization occurred at a late stage of hydrothermal evolution and was followed by a sulfide stage. Barite, calcite, and strontianite appear homogeneous in back-scattered electron images and have high REE contents of 103–217, 146–13,120, and 194–16,412 ppm in their mineral lattices, respectively. Two enrichment processes were necessary for the formation of the Weishan deposit: Production of mineralized carbonatite and subsequent enrichment by magmatic–hydrothermal processes. The geological setting and petrographic characteristics of the Weishan deposit indicate that two main factors facilitated REE enrichment: (1) fractures that facilitated circulation of ore-forming fluids and provided space for REE precipitation and (2) high ore fluorite and barite contents resulting in high F− and SO42− concentrations in the ore-forming fluids that promoted REE transport and deposition.



Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1418-1434 ◽  
Author(s):  
Baishali Roy ◽  
Ron M. Clowes

The Guichon Creek batholith (GCB), located in south‐central British Columbia, contains several large, low‐grade copper deposits of considerable economic importance. The surface geology of the Guichon batholith and its surrounding region have been well mapped; however, little information about subsurface features is available. The batholith consists of four major phases, emplaced radially outward, which can be separated on the basis of their texture and composition. Previous interpretation of gravity data suggests a mushroom‐shaped structure for the batholith. Data from Lithoprobe seismic reflection line 88-11, acquired across the batholith in 1988, reveal weakly coherent east‐dipping reflections on the west side and west‐dipping reflections on the east in the upper 10 km. To determine if these are related to structures associated with the batholith, we reprocessed the upper 6 s with particular emphasis on applications of signal enhancement techniques (e.g., pattern recognition methods, refraction statics, dip moveout corrections) and correlation of the improved subsurface images with the geological environment associated with porphyry copper deposits. Low near‐surface velocities correlate well with the phases of the batholith hosting the major copper deposits, which structurally lie in faulted and brecciated regions. Although the top 1.5 km cannot be imaged by the regional‐scale seismic reflection data, the reprocessed seismic section helps define the edges of the batholith, its various concentric phases, and the stem in the depth range of 1.5 to 10 km. The seismic results are complemented by 2.5-D (profile sense) modeling and 3-D inversion of regional‐scale gravity and high‐resolution aeromagnetic data. These show a low‐density and low‐magnetic‐susceptibility region associated with the batholith that extends to more than 10 km depth. The region of active mining interest lies above a circular low‐susceptibility area at 2 km depth and a low‐velocity region. Integrated interpretation of geophysical results and geological observations indicates the GCB is a funnel‐shaped feature in which mineralization is located above the stem of the batholith.



1994 ◽  
Vol 51 (5) ◽  
pp. 1147-1161 ◽  
Author(s):  
Malcolm Stephenson ◽  
Gregory Mierle ◽  
Ronald A. Reid ◽  
Gerald L. Mackie

A simple method for the assessment of littoral benthic macroinvertebrate (BMI) assemblages in lakes was developed at the Experimental Lakes Area (ELA) in northwestern Ontario and applied to 64 lakes in central Ontario. The presence (1) or absence (0) of BMI taxa was established at five sites on each lake, using a kick-and-sweep net technique. Summing presence/absence scores across sites ranked the importance of each taxon in each lake on a scale of 0 to 5. Relationships between the BMI assemblages were assessed using nonmetric multidimensional scaling (NMDS), based upon the Kendall's τ correlation matrix. Correlations between NMDS dimension 1 and 2 scores and environmental variables identified factors that may structure BMI assemblages. The BMI assemblages of three experimentally acidified and seven reference lakes at the ELA were correlated strongly with lake pH. The BMI assemblage structure of central Ontario lakes was predicted by lake area and sensitivity to acidification (NMDS dimension 1) and by lake elevation (NMDS dimension 2). The BMI assemblages of small or Ca-poor and acidic lakes include fewer oligochaetes, mayflies, and Cryptochironomus and Stictochironomus (chironomids) and more Odonata, Trichoptera, Chironomus, Conchapelopia, Microtendipes, and Procladius (chironomids), and Crangonyx (Amphipoda) than other central Ontario lakes.



Radiology ◽  
2011 ◽  
Vol 260 (3) ◽  
pp. 841-847 ◽  
Author(s):  
Helen M. C. Cheung ◽  
Alan R. Moody ◽  
Navneet Singh ◽  
Richard Bitar ◽  
James Zhan ◽  
...  


1980 ◽  
Vol 17 (6) ◽  
pp. 681-689 ◽  
Author(s):  
George Plafker ◽  
Travis Hudson

A low-grade metamorphic sequence consisting of thick mafic volcanic rocks overlain by calcareous flysch with very minor limestone underlies much of the Chilkat Peninsula. Fossils collected from both units are of Triassic age, probably late Karnian. This sequence appears to be part of the Taku terrane, a linear tectono-stratigraphic belt that now can be traced for almost 700 km through southeastern Alaska to the Kelsall Lake area of British Columbia. The age and gross lithology of the Chilkat Peninsula sequence are comparable to Upper Triassic rocks that characterize the allochthonous tectono-stratigraphic terrane named Wrangellia. This suggests either that the two terranes are related in their history or that they are allochthonous with respect to one another and coincidentally evolved somewhat similar sequences in Late Triassic time.



Sign in / Sign up

Export Citation Format

Share Document