U–Pb geochronology of detrital zircons from a continental margin assemblage in the northern Coast Mountains, southeastern Alaska

1991 ◽  
Vol 28 (8) ◽  
pp. 1285-1300 ◽  
Author(s):  
George E. Gehrels ◽  
William C. McClelland ◽  
Scott D. Samson ◽  
P. Jonathan Patchett

Metamorphic rocks within and west of the northern Coast Mountains in southeastern Alaska consist of an Upper Proterozoic(?) to upper Paleozoic continental margin assemblage that we interpret to belong to the Yukon-Tanana terrane. U–Pb geochronologic analyses of single detrital zircon grains from four samples of quartzite suggest that the zircons were shed from source regions containing rocks of ~495 Ma, ~750 Ma, 1.05–1.40 Ga, 1.75–2.00 Ga, ~2.3 Ga, 2.5–2.7 Ga, and ~3.0 Ga. Multigrain fractions from two samples yield upper intercepts between 2.0 and 2.3 Ga, but the scarcity of single grains of similar age suggests that these fractions comprise a mixture of < 2.0 and > 2.3 Ga grains. Zircons in these rocks generally overlap in age with (i) detrital zircons in metasedimentary rocks of the Yukon–Tanana terrane in eastern Alaska and Yukon, (ii) detrital zircons in strata of the Cordilleran miogeocline, and (iii) plutonic and gneissic rocks that intrude or are overlain by miogeoclinal strata. In addition, the pre-1.7 Ga grains overlap in age with dated crystalline rocks of the western Canadian Shield. These similarities raise the possibility that metaclastic rocks in the northern Coast Mountains accumulated in proximity to western North America. The younger zircon populations were likely shed from mid-Proterozoic to early Paleozoic igneous rocks that now occur locally (but may have been widespread) along the Cordilleran margin. Recognition of a continental margin assemblage of possible North American affinity in the Coast Mountains raises the possibility that some arc-type and oceanic terranes inboard of the Coast Mountains may be large klippen that have been thrust over the North American margin.

1991 ◽  
Vol 28 (6) ◽  
pp. 899-911 ◽  
Author(s):  
George E. Gehrels ◽  
William C. McClelland ◽  
Scott D. Samson ◽  
P. Jonathan Patchett ◽  
David A. Brew

U–Pb geochronologic studies demonstrate that steeply dipping, sheetlike tonalitic plutons along the western margin of the northern Coast Mountains batholith were emplaced between ~83 and ~57 (perhaps ~55) Ma. Less elongate tonalitic–granodioritic bodies in central portions of the batholith yield ages of 59–58 Ma, coeval with younger phases of the tonalitic sheets. Large granite–granodiorite bodies in central and eastern portions of the batholith were emplaced at 51–48 Ma. Trends in ages suggest that the tonalitic bodies generally become younger southeastward and that, at the latitude of Juneau, plutonism migrated northeastward across the batholith at ~0.9 km/Ma. Variations in the age, shape, location, and degree of fabric development among the various plutons indicate that Late Cretaceous – Paleocene tonalitic bodies were emplaced into a steeply dipping, dip-slip shear zone that was active along the western margin of the batholith. Postkinematic Eocene plutons were emplaced at shallow crustal levels. Inherited zircon components in these plutons range in age from mid-Paleozoic to Early Proterozoic and are coeval with detrital zircons in adjacent metasedimentary rocks. These old zircons, combined with evolved Nd isotopic signatures for most plutons, record assimilation of continental crustal or supracrustal rocks during the generation and (or) ascent of the plutons.


2007 ◽  
Vol 44 (3) ◽  
pp. 297-316 ◽  
Author(s):  
JoAnne Nelson ◽  
George Gehrels

Two samples of late Paleozoic grit and Late Mississippian quartzite–chert conglomerate collected from southeastern Yukon–Tanana terrane (YTT) — a composite thrust sheet resting structurally above North American parautochthonous strata and intervening imbricate sheets of the late Paleozoic oceanic Slide Mountain terrane — yielded, respectively, 89 and 74 concordant or nearly concordant (<20% discordant) U–Pb ages on single detrital zircons. They provide constraints on the provenance of this allochthonous pericratonic terrane. Zircons in the grit range from 1770 to 2854 Ma, with a well-defined Early Proterozoic peak between 1800 and 2100 Ma. Precambrian zircons in the conglomerate also show a dominant peak between 1800 and 2100 Ma and smaller peaks between 2200 and 3200 Ma, with a few older grains, and younger grains with ages of 998, 1219, 1255, 1256, and 1417 Ma. The conglomerate also yielded three Devonian grains, with ages of 366 ± 23, 373 ± 12, and 379 ± 23 Ma. Their ages are approximately coeval with the oldest felsic to intermediate arc- and rift-related magmatism in the YTT. The age spectra from southeastern YTT units compare closely with those from Mississippian and older pericratonic units in the Coast Mountains, confirming correlations previously made on lithologic grounds. They also strongly resemble detrital zircon populations from craton-derived Paleozoic units of the northern North American autochthon. This robust U–Pb data set lends support to the idea that YTT once formed part of the outer, active margin of the North American continent, prior to Mississippian rifting and marginal ocean basin development.


1990 ◽  
Vol 27 (5) ◽  
pp. 712-726 ◽  
Author(s):  
Robert J. Scammell ◽  
Richard L. Brown

The Monashee Terrane of southeastern British Columbia is composed of Lower Proterozoic basement gneisses unconformably overlain by cover gneisses. The latter constitute a thick (> 2000 m) and laterally extensive (> 150 km) upper-amphibolite-grade succession of metasedimentary rocks, locally intercalated with minor intrusive and extrusive units. This succession is interpreted as reflecting initial broad, amagmatic subsidence and sedimentation on a cratonic platform (basement gneisses), most likely of North American affinity. Throughout most of the terrane, syndepositional magmatism is first marked by a laterally extensive (> 100 km) stratiform pyroclastic carbonatite, which is part of intermittent (long-lived?) alkaline magmatism. One alkaline body was intruded at ca. 740 ± 36 Ma (U–Pb zircon), suggesting that it may be part of initial Windermere rifting. Post-pyroclastic-carbonatite syndepositional extensional tectonism is further evidenced at the north end of the terrane by interlayered mature and immature siliciclastic sediments, with rapid facies changes, intercalated with ultramafic and mafic sills and flows, plus minor felsic pyroclastic deposits. All of these later deposits lie above stratigraphy correlated with strata hosting a stratiform Pb–Zn deposit with an Early Cambrian galena Pb-isotope age and, therefore, may be correlative with a rift–drift transition recorded in Hamill Group strata to the east. Rift tectonism recorded in cover gneisses may reflect one or more documented rift and rift–drift events recorded in Upper Proterozoic to Lower Cambrian strata of the western North American continental terrace prism.


1998 ◽  
Vol 35 (3) ◽  
pp. 269-279 ◽  
Author(s):  
G E Gehrels ◽  
P A Kapp

U-Pb ages have been determined for 55 detrital zircon grains from a metasedimentary sequence along the west flank of the Coast Mountains in southeastern Alaska. These rocks belong to the Port Houghton assemblage, which consists of upper Paleozoic pelitic and psammitic schist, metaconglomerate, metabasalt, and marble. The Port Houghton assemblage rests unconformably(?) on metamorphosed and deformed mid-Paleozoic arc-type volcanics (Endicott Arm assemblage), which gradationally overlie upper Proterozoic(?) - lower Paleozoic continental margin strata (Tracy Arm assemblage). Three main clusters of ages are present: 330-365 Ma (19 grains), 1710-2000 Ma (27 grains), and 2450-2680 Ma (6 grains). Additional grains are approximately 2334, 2364, and 3324 Ma. Comparison of these ages with detrital zircon ages in other Cordilleran assemblages supports previous interpretations that metasedimentary rocks in the Coast Mountains (i) form a southwestern continuation of the Yukon-Tanana terrane of eastern Alaska and Yukon, (ii) are not correlative with strata of the Alexander terrane, and (iii) contain detritus that was probably shed from cratonal rocks in the Canadian Shield to the east. Several scenarios exist to explain the occurrence of these continental margin rocks west (outboard) of arc-type and ocean-floor assemblages such as the Stikine, Cache Creek, Quesnel, and Slide Mountain terranes.


2019 ◽  
Author(s):  
William A. Matthews ◽  
◽  
Marie-Pier Boivin ◽  
Kirsten Sauer ◽  
Daniel S. Coutts

2018 ◽  
Vol 45 (3) ◽  
pp. 301 ◽  
Author(s):  
Francisco Hervé ◽  
Mauricio Calderón ◽  
Mark Fanning ◽  
Robert Pankhurst ◽  
Carlos W. Rapela ◽  
...  

Previous work has shown that Devonian magmatism in the southern Andes occurred in two contemporaneous belts: one emplaced in the continental crust of the North Patagonian Massif and the other in an oceanic island arc terrane to the west, Chaitenia, which was later accreted to Patagonia. The country rocks of the plutonic rocks consist of metasedimentary complexes which crop out sporadically in the Andes on both sides of the Argentina-Chile border, and additionally of pillow metabasalts for Chaitenia. Detrital zircon SHRIMP U-Pb age determinations in 13 samples of these rocks indicate maximum possible depositional ages from ca. 370 to 900 Ma, and the case is argued for mostly Devonian sedimentation as for the fossiliferous Buill slates. Ordovician, Cambrian-late Neoproterozoic and “Grenville-age” provenance is seen throughout, except for the most westerly outcrops where Devonian detrital zircons predominate. Besides a difference in the Precambrian zircon grains, 76% versus 25% respectively, there is no systematic variation in provenance from the Patagonian foreland to Chaitenia, so that the island arc terrane must have been proximal to the continent: its deeper crust is not exposed but several outcrops of ultramafic rocks are known. Zircons with devonian metamorphic rims in rocks from the North Patagonian Massif have no counterpart in the low metamorphic grade Chilean rocks. These Paleozoic metasedimentary rocks were also intruded by Pennsylvanian and Jurassic granitoids.


2020 ◽  
Vol 39 (8) ◽  
pp. 543-550
Author(s):  
Roberto Fainstein ◽  
Juvêncio De Deus Correia do Rosário ◽  
Helio Casimiro Guterres ◽  
Rui Pena dos Reis ◽  
Luis Teófilo da Costa

Regional geophysics research provides for prospect assessment of Timor-Leste, part of the Southeast Asia Archipelago in a region embracing the Banda Arc, Timor Island, and the northwest Australia Gondwana continental margin edge. Timor Island is a microcontinent with several distinct tectonic provinces that developed initially by rifting and drifting away from the Australian Plate. A compressive convergence began in the Miocene whereby the continental edge of the large craton collided with the microcontinent, forming a subduction zone under the island. The bulk of Timor Island consists of a complex mélange of Tertiary, Cretaceous, Jurassic, Triassic, Permian, and volcanic features over a basal Gondwana craton. Toward the north, the offshore consists of a Tertiary minibasin facing the Banda Arc Archipelago, with volcanics interspersed onshore with the basal Gondwana pre-Permian. A prominent central overthrust nappe of Jurassic and younger layers makes up the mountains of Timor-Leste, terminating south against an accretionary wedge formed by this ongoing collision of Timor and Australia. The northern coast of the island is part of the Indonesian back arc, whereas the southern littoral onshore plus shallow waters are part of the accretionary prism. Deepwater provinces embrace the Timor Trough and the slope of the Australian continental margin being the most prospective region of Timor-Leste. Overall crust and mantle tectonic structuring of Timor-Leste is interpreted from seismic and potential field data, focusing mostly on its southern offshore geology where hydrocarbon prospectivity has been established with interpretation of regional seismic data and analyses of gravity, magnetic, and earthquake data. Well data tied to seismic provides focal points for stratigraphic correlation. Although all the known producing hydrocarbon reservoirs of the offshore are Jurassic sands, interpretation of Permian and Triassic stratigraphy provides knowledge for future prospect drilling risk assessment, both onshore and offshore.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongdan Deng ◽  
Jianye Ren ◽  
Xiong Pang ◽  
Patrice F. Rey ◽  
Ken R. McClay ◽  
...  

Abstract During extension, the continental lithosphere thins and breaks up, forming either wide or narrow rifts depending on the thermo-mechanical state of the extending lithosphere. Wide continental rifts, which can reach 1,000 km across, have been extensively studied in the North American Cordillera and in the Aegean domain. Yet, the evolutionary process from wide continental rift to continental breakup remains enigmatic due to the lack of seismically resolvable data on the distal passive margin and an absence of onshore natural exposures. Here, we show that Eocene extension across the northern margin of the South China Sea records the transition between a wide continental rift and highly extended (<15 km) continental margin. On the basis of high-resolution seismic data, we document the presence of dome structures, a corrugated and grooved detachment fault, and subdetachment deformation involving crustal-scale nappe folds and magmatic intrusions, which are coeval with supradetachment basins. The thermal and mechanical weakening of this broad continental domain allowed for the formation of metamorphic core complexes, boudinage of the upper crust and exhumation of middle/lower crust through detachment faulting. The structural architecture of the northern South China Sea continental margin is strikingly similar to the broad continental rifts in the North American Cordillera and in the Aegean domain, and reflects the transition from wide rift to continental breakup.


Geology ◽  
1990 ◽  
Vol 18 (3) ◽  
pp. 208 ◽  
Author(s):  
George E. Gehrels ◽  
William C. McClelland ◽  
Scott D. Samson ◽  
P. Jonathan Patchett ◽  
Jay L. Jackson

1991 ◽  
Vol 28 (8) ◽  
pp. 1254-1270 ◽  
Author(s):  
Gerald M. Ross ◽  
Randall R. Parrish

We address two problems of Cordilleran geology in this study using U–Pb dating of single detrital zircon grains from metasedimentary rocks: the provenance of the Windermere Supergroup, and the age and correlation of metasedimentary rocks within the Shuswap Complex that are at high metamorphic grade. Because some of these rocks are clearly of North American affinity, the ages of zircons provide indirect constraints on the age and distribution of continental basement from which the zircons were derived.A consistent pattern emerges from ages of about 50 grains from six rocks. Nearly all samples analyzed (48–53°N) are characterized by a bimodal distribution of zircon ages of 1.65–2.16 Ga and > 2.5 Ga, with a distinct lack of ages between 2.1 and 2.5 Ga. Exceptions to this pattern are young zircons from two samples, from Valhalla and Grand Forks – Kettle complexes of southeastern British Columbia, that have grains 1435 ± 35 and 650 ± 15 Ma, respectively. These younger grains are inferred to have been derived from magmatic rocks, and they have no obvious source in either the Canadian Shield or the Alberta subsurface basement to the east. The Early Proterozoic and Archean ages of detrital zircons resemble those of dated basement rocks beneath the Alberta Basin as well as basement exposed within the Cordilleran hinterland (gneisses of Thor–Odin, Frenchman Cap, and Malton regions). However, 2.1–2.4 Ga rocks that are extensive in the subsurface of northern Alberta are not represented in the inventory of detrital zircon ages presented in this paper.This pattern suggests that much of the Cordilleran basement between these latitudes is underlain by Archean crust of the Hearne–Wyoming provinces that may be mantled to the west by an orogenic–magmatic belt of Early Proterozoic (1.7–1.9 Ga) age which may largely have been parallel to the present Cordilleran orogen.


Sign in / Sign up

Export Citation Format

Share Document