Relocation of earthquakes west of Vancouver Island, British Columbia, 1965–1983

1992 ◽  
Vol 29 (5) ◽  
pp. 953-961 ◽  
Author(s):  
Rutger Wahlström ◽  
Garry C. Rogers

In the tectonically complex region of young plate interaction west of Vancouver Island, 360 earthquakes have been relocated. The earthquakes occurred in the years 1965 – 1983, when the Canadian seismograph network in the region did not significantly change configuration, and are in the magnitude range 3–5. A traveltime model was derived and applied to arrival times for a selected, limited set of station–phase combinations. Time corrections for these combinations were derived from joint-hypocentre locations of earthquakes in specific regions using independently located reference events. An algorithm for routine location of offshore earthquakes in this region is suggested.The correlation between seismicity and mapped bathymetrical features is strong along the Revere–Dellwood transform fault and the northern segments of the Explorer ridge – transform fault system. Considerable seismicity occurs inside the Explorer Plate, indicating internal deformation. The Sovanco and Nootka shear zones, the southern borders of the Explorer Plate, are characterized by broad belts of seismicity and evidently are not simple transform margins. The Explorer and northern Juan de Fuca ridges are aseismic in the investigated magnitude range.

1971 ◽  
Vol 8 (7) ◽  
pp. 788-801 ◽  
Author(s):  
M. J. Berry ◽  
W. R. Jacoby ◽  
E. R. Niblett ◽  
R. A. Stacey

Geophysical studies of the crust and upper mantle have been conducted in the Canadian Cordillera for over two decades, but only recently have sufficient data been collected to permit a synthesis and a correlation with the major geological units. The studies have included gravity, heat flow, and magnetotelluric observations, geomagnetic depth sounding, and high level aeromagnetics as well as both small and large scale refraction and reflection seismic surveys.It now appears that major crustal units may be recognized geophysically:(i) Seismic and gravity data suggest that the Plains and Rocky Mountains are underlain by two units of the North American craton with a crustal section 45–50 km thick. The northern unit appears to terminate at the Rocky Mountain Trench while the southern unit may extend to the Omineca Geanticline.(ii) The combined geological and geophysical data suggest that the Rocky Mountain Trench and possibly the Kootenay Arc near the 49th parallel mark the edge of the Precambrian continental margin and that the western Cordillera was formed by a complex succession of plate interactions with repeated reactivation of block boundaries.(iii) A combination of magnetic and heat flow data suggest that the region between the Rocky Mountain Trench and the Fraser Lineament is part of the Cordilleran Thermal Anomaly Zone recognized by Blackwell in the United States.(iv) Seismic data in Central British Columbia suggest that the Pinchi Fault system is a boundary between two crustal blocks.(v) The crustal thickness of the Coast Geanticline appears to increase gradually to the west to approximately 40 km and, at least in southern British Columbia, does not have a root zone below the mountains.(vi) The crustal section beneath Vancouver Island is abnormally thick and there is some paleomagnetic data which suggest that the Island may not have been formed in its present position, contiguous to the Cordillera. The crustal section for the northern part of the Insular Trough is significantly thinner.(vii) The active spreading of the Juan de Fuca Rise – Explorer Trench is now well documented. The geophysical data suggest active subduction of the Juan de Fuca plate beneath Oregon, Washing-ton, and southern Vancouver Island. However, further north there is no evidence for subduction.


1978 ◽  
Vol 15 (7) ◽  
pp. 1170-1193 ◽  
Author(s):  
W. G. Milne ◽  
G. C. Rogers ◽  
R. P. Riddihough ◽  
G. A. McMechan ◽  
R. D. Hyndman

The seismicity of western Canada has been studied for the period 1899–1975. The quality of the data collected improved through this period as the number of recording stations increased and the location and analysis methods developed, but significant uncertainties and biases remain. Although these restrictions limit detailed correlation of seismic events with specific tectonic features, in general the most active earthquake areas correspond to the boundaries between the major lithospheric plates. These are the Queen Charlotte – Fairweather fault system (Pacific–America plates), the offshore ridge-fracture zone system (Pacific – Juan de Fuca plates), and the Vancouver Island – Puget Sound region (Juan de Fuca – America plates). Strain release calculations show that most seismic energy is released along the Queen Charlotte – Fairweather fault system and that at present a significant accumulation of strain may be available for release as earthquakes in the Vancouver Island – Puget Sound area. Except for the absence of thrust earthquakes along the apparently converging margin, focal mechanisms are in good agreement with the postulated plate motions. The b values in the frequency–magnitude recurrence relation for different areas within the region range from 0.65 to 0.82.


2014 ◽  
Vol 51 (3) ◽  
pp. 222-242 ◽  
Author(s):  
A.M. Celâl Şengör ◽  
Céline Grall ◽  
Caner İmren ◽  
Xavier Le Pichon ◽  
Naci Görür ◽  
...  

The North Anatolian Fault is a 1200 km long strike-slip fault system connecting the East Anatolian convergent area with the Hellenic subduction zone and, as such, represents an intracontinental transform fault. It began forming some 13–11 Ma ago within a keirogen, called the North Anatolian Shear Zone, which becomes wider from east to west. Its width is maximum at the latitude of the Sea of Marmara, where it is 100 km. The Marmara Basin is unique in containing part of an active strike-slip fault system in a submarine environment in which there has been active sedimentation in a Paratethyan context where stratigraphic resolution is higher than elsewhere in the Mediterranean. It is also surrounded by a long-civilised rim where historical records reach well into the second half of the first millennium BCE (before common era). In this study, we have used 210 multichannel seismic reflexion profiles, adding up to 6210 km profile length and high-resolution bathymetry and chirp profiles reported in the literature to map all the faults that are younger than the Oligocene. Within these faults, we have distinguished those that cut the surface and those that do not. Among the ones that do not cut the surface, we have further created a timetable of fault generation based on seismic sequence recognition. The results are surprising in that faults of all orientations contain subsets that are active and others that are inactive. This suggests that as the shear zone evolves, faults of all orientations become activated and deactivated in a manner that now seems almost haphazard, but a tendency is noticed to confine the overall movement to a zone that becomes narrower with time since the inception of the shear zone, i.e., the whole keirogen, at its full width. In basins, basin margins move outward with time, whereas highs maintain their faults free of sediment cover, making their dating difficult, but small perched basins on top of them in places make relative dating possible. In addition, these basins permit comparison of geological history of the highs with those of the neighbouring basins. The two westerly deeps within the Sea of Marmara seem inherited structures from the earlier Rhodope–Pontide fragment/Sakarya continent collision, but were much accentuated by the rise of the intervening highs during the shear evolution. When it is assumed that below 10 km depth the faults that now constitute the Marmara fault family might have widths approaching 4 km, the resulting picture resembles a large version of an amphibolite-grade shear zone fabric, an inference in agreement with the scale-independent structure of shear zones. We think that the North Anatolian Fault at depth has such a fabric not only on a meso, but also on a macro scale. Detection of such broad, vertical shear zones in Precambrian terrains may be one way to get a handle on relative plate motion directions during those remote times.


2007 ◽  
Vol 53 (183) ◽  
pp. 565-572 ◽  
Author(s):  
Juan Pablo Milana

The deformation, resulting from a surge in 1985, of Glaciar Horcones Inferior is analyzed using structural geological models. During the surge, previously continuous debris cover was deformed by the formation of regularly separated and rotated ice blocks, suggesting a system of linked rotational extensional faults. Block tilting was measured from photographs taken shortly after the surge, showing rotation of the debris-covered surface. Fault inclination was assumed to be coincident with the debris-free side of the block. Glacier advance during the surge was obtained by comparing pre-surge aerial photographs with the position of maximum advance after the surge. Glacier thinning was estimated from the debris surface average lowering (relief generated at lateral scarps coincident with shear zones) and ice thickness measurements after surge termination. Three independent sets of information, geometry of the deformation (i.e. depth of detachment, fault traces, fault spacing, block rotation), glacier thinning and net advance, limit possible interpretations. Surface geometry suggests a domino-style or a linked planar rotational extensional fault system. In the observed configuration, however, these models can only explain a 12–13% extension. Glacier thinning suggests 30% local extension, and total glacier advance implies 16% minimum extension, which does not account for some frontal compression, as observed. A linked curved rotational extensional fault model fits the data well, implying a significant degree of internal deformation within each block. This model satisfactorily explains the observed deformation produced by the surge. It may also explain some modes of fast glacier flow, since the observed style of block tilting is present in other glaciers with high relief.


1984 ◽  
Vol 21 (10) ◽  
pp. 1082-1097 ◽  
Author(s):  
S. L. Fumerton ◽  
M. R. Stauffer ◽  
J. F. Lewry

The Early Proterozoic Wathaman batholith, in northern Saskatchewan and Manitoba, is a 900 km long, megacrystic granite–granodiorite intrusion that straddles the junction between ensialic miogeoclinal and probably ensimatic eugeoclinal–island-arc terranes of the "Trans-Hudson Orogen," of the western Churchill Province. Although the largest Precambrian batholith known, it is, apart from marginal complexities, remarkably homogeneous throughout and, unlike comparably sized and situated Phanerozoic batholiths, shows no evidence of multiple intrusion, nor does it have comagmatic early mafic phases. However, it may be considered as just one phase of a larger batholithic belt that also includes numerous smaller plutons. Taken as a whole the composite batholithic belt is similar in many aspects to Mesozoic Pacific rim batholithic belts, and like them probably was emplaced during plate collision.The batholith is affected by pervasive internal deformation, is bounded on the northwest by major blastomylonite zones, and is transected internally by splaying shear zones. It is a mid- to late-synkinematic Hudsonian intrusion, emplaced within a markedly compressional, crustal regime. On the basis of petrological, geochemical, and isotopic criteria the batholith is an "I-type" intrusion, but the origin of the magma and the emplacement mechanisms are still unresolved problems.


1977 ◽  
Vol 14 (6) ◽  
pp. 1324-1342 ◽  
Author(s):  
I. A. Paterson

At Pinchi Lake, the Pinchi Fault Zone separates the early Mesozoic Takla Group to the east from the late Paleozoic Cache Creek Group to the west. Between these regions a complex fault system involves a series of elongate fault-bounded blocks of contrasting lithology and metamorphic grade. These blocks consist of: (a) highly deformed aragonite–dolomite limestone and blueschist, (b) pumpellyite–aragonite greenstone, (c) a harzburgite–gabbro–diabase–basalt ophiolite sequence, (d) serpentinized alpine ultramafite, and (e) Cretaceous (?) conglomerate. The blueschist probably formed at 8–12 kbar (8 × 105–12 × 105 kPa) and 225–325 °C during a penetrative early deformation which was closely followed by a later deformation associated with a Late Triassic uplift and cooling event. The ophiolite sequence is overlain by Late Triassic sediments which locally contain aragonite suggesting that at least part of the Takla Group may have also undergone high pressure – low temperature metamorphism.The evolution of the 450 km fault zone is discussed and a model is proposed which involves right lateral transform faulting on the Pinchi Fault and underthrusting along northerly dipping subduction zones during the Late Triassic. The blueschist formed at high pressures in such a subduction zone and leaked to the surface in zones of low pressure along an active transform fault.


2020 ◽  
Author(s):  
Jan Behrmann ◽  
Jakob Schneider ◽  
Benjamin Zitzow

<p>Amorgos is the south-eastern outpost of the Cyclades Islands in the Aegean Sea, which forms part of the Neogene-Quaternary zone of crustal and lithospheric N-S upper plate extension northward of the Hellenic subduction zone and deep sea trench. Apart from subduction-related earthquakes further south, the southern Aegean is affected by frequent earthquakes sourced in the upper plate. The twin earthquakes of 9 July 1956, followed by a strong tsunami, were the strongest events of this kind in the past Century. Hypocenters are related to a NE-SW oriented normal fault bounding the Amorgos-Santorini Graben System. There are questions in the literature regarding the seismic source and fault plane solutions, especially the contribution of a transcurrent faulting component.</p><p>We have analyzed the kinematics of brittle faults exposed on Amorgos Island itself that could be related to Neogene and active extensional and/or transcurrent deformation. Seismic slip often occurs on previously existing faults. Thus, their orientations and kinematics may help shed light on the structure of seismic sources at depth. We present evidence for a complex history of faulting. Early normal detachment faults and shear zones overprint older (rare) reverse faults, and are themselves overprinted by several sets of dominantly dextral NE and SE trending strike slip faults. Youngest is a conjugate set of NE trending high-angle normal faults. These are especially frequent along the SE coast of the island, suggesting a clear spatial relationship with the 1956 rupture. They can be fitted to a moment tensor solution similar to the published solutions for the 1956 Amorgos earthquake. The kinematic solution for the population of early normal faults suggests that the whole of Amorgos Island may have experienced a 15° NNW tilt during later extension, which lets us suspect that the island could be a tilted block of a much larger fault system. Regarding long-term late Neogene to Quaternary kinematics, dextrally transtensive fault slip is required to fit the regional pattern of extensional deformation in the Aegean, and this is reflected by small-scale brittle faulting on Amorgos.</p>


Sign in / Sign up

Export Citation Format

Share Document