Paleomagnetism of the late Paleozoic Slide Mountain terrane, northern and central British Columbia

1993 ◽  
Vol 30 (9) ◽  
pp. 1898-1913 ◽  
Author(s):  
David R. Richards ◽  
Robert F. Butler ◽  
Tekla A. Harms

Paleomagnetic samples were collected from Mid-Pennsylvanian to Lower Permian red argillaceous cherts at two localities of the Slide Mountain terrane: 18 sites from the Sylvester allochthon in northern British Columbia and 11 sites from Sliding Mountain in central British Columbia. A secondary component of natural remanent magnetization in the Sylvester samples yields a paleomagnetic pole that can be brought into coincidence with the Jurassic portion of the North American apparent polar wander path by inferring vertical-axis rotation during obduction of the allochthon. Both localities yield a characteristic component (ChRM) with unblocking temperatures from 650 to 680 °C. After structural correction for bedding tilt, all inclinations of ChRM are negative, consistent with magnetization during a reversed-polarity interval in the northern hemisphere. Site-mean ChRM directions show consistent inclinations but distinct stratigraphic groupings of declinations. Inclination-only statistics indicate that the ChRM passes a tilt test within the Sylvester allochthon and regionally between the two localities. The ChRM was apparently acquired prior to structural imbrication within the Sylvester section and regional differential tilting. We interpret the ChRM to be a primary magnetization acquired at or soon after deposition during the Permo-Carboniferous reversed-polarity superchron. The mean ChRM inclination of −16.7° ± 6.0° from the Sylvester allochthon indicates a paleo-latitude of 8.8° ± 3.4°N, which is corroborated by a paleolatitude of 1.9° ± 1.5°N from the Sliding Mountain locality. When compared with expected Pennsylvanian–Permian paleolatitudes, a net poleward translation of 20.3 ± 3.7° is implied for at least the sampled lithotectonic component of the Sylvester allochthon.

Solid Earth ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 295-322 ◽  
Author(s):  
Derya Gürer ◽  
Douwe J. J. van Hinsbergen ◽  
Murat Özkaptan ◽  
Iverna Creton ◽  
Mathijs R. Koymans ◽  
...  

Abstract. To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa–Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Ulukışla and Sivas regions. We show paleomagnetic results from ∼ 30 localities identifying a coherent rotation of a SE Anatolian rotating block comprised of the southern Kırşehir Block, the Ulukışla Basin, the Central and Eastern Taurides, and the southern part of the Sivas Basin. Using our new and published results, we compute an apparent polar wander path (APWP) for this block since the Late Cretaceous, showing that it experienced a ∼ 30–35° counterclockwise vertical axis rotation since the Oligocene time relative to Eurasia. Sediments in the northern Sivas region show clockwise rotations. We use the rotation patterns together with known fault zones to argue that the counterclockwise-rotating domain of south-central Anatolia was bounded by the Savcılı Thrust Zone and Deliler–Tecer Fault Zone in the north and by the African–Arabian trench in the south, the western boundary of which is poorly constrained and requires future study. Our new paleomagnetic constraints provide a key ingredient for future kinematic restorations of the Anatolian tectonic collage.


2008 ◽  
Vol 45 (9) ◽  
pp. 969-980 ◽  
Author(s):  
K. Kawasaki ◽  
D. T.A. Symons

Paleomagnetic results are reported from the Devonian St. Lawrence granite and the fluorite veins within the granite or its related porphyry dikes. Paleomagnetic analysis of 359 specimens from 29 sites shows that there is no statistically significant difference at 95% confidence between the site mean characteristic remanent magnetization (ChRM) directions carried by pyrrhotite and (or) magnetite of the granite and fluorite veins. No post-granite metamorphic event is known in the area. Thus, these concordant directions indicate that the granite and fluorite veins are coeval and retain a primary remanence. However, the mean ChRM direction of 25 vein and granite sites yields an Early Pennsylvanian paleopole of ∼316 Ma on the North American apparent polar wander path at 35.5°N, 129.2°E (A95 = 3.4°) that is younger than the 374 ± 2 Ma Devonian U–Pb zircon age for the granite. Two intersecting vertical vein sets indicate that the St. Lawrence granite has not been tilted since emplacement of the fluorite veins. Therefore, the difference between the measured and expected paleopoles is interpreted to result from a postemplacement counterclockwise rotation of ∼17° of the St. Lawrence granite region about a vertical axis. Analysis of Carboniferous paleopoles in the northern Appalachian orogen indicates the rotation at the St. Lawrence area is Late Devonian during the Acadian orogeny.


1989 ◽  
Vol 26 (2) ◽  
pp. 296-304 ◽  
Author(s):  
Julie E. Gales ◽  
Ben A. van der Pluijm ◽  
Rob Van der Voo

Paleomagnetic sampling of the Lawrenceton Formation of the Silurian Botwood Group in northeastern Newfoundland was combined with detailed structural mapping of the area in order to determine the deformation history and make adequate structural corrections to the paleomagnetic data.Structural analysis indicates that the Lawrenceton Formation experienced at least two folding events: (i) a regional northeast–southwest-trending, Siluro-Devonian folding episode that produced a well-developed axial-plane cleavage; and (ii) an episode of local north-trending folding. Bedding – regional cleavage relationships indicate that the latter event is older than the regional folding.Thermal demagnetization of the Lawrenceton Formation yielded univectorial southerly and shallow directions (in situ). A fold test on an early mesoscale fold indicates that the magnetization of the Botwood postdates this folding event. However, our results, combined with an earlier paleomagnetic study of nearby Lawrenceton Formation rocks, demonstrate that the magnetization predates the regional folding. Therefore, we conclude that the magnetization occurred subsequent to the local folding but prior to the period of regional folding.While a tectonic origin for local folding cannot be entirely excluded, the subaerial nature of these volcanics, the isolated occurrence of these folds, and the absence of similar north-trending folds in other areas of eastern Notre Dame Bay suggest a syndepositional origin. Consequently, the magnetization may be nearly primary. Our study yields a characteristic direction of D = 175°, I = +43°, with a paleopole (16°N, 131 °E) that plots near the mid-Silurian track of the North American apparent polar wander path. This result is consistent with an early origin for the magnetization and supports the notion that the Central Mobile Belt of Newfoundland was adjacent to the North American craton, in its present-day position, since the Silurian.


1985 ◽  
Vol 22 (4) ◽  
pp. 553-566 ◽  
Author(s):  
K. L. Buchan ◽  
W. R. A. Baragar

The komatiitic basalts of the Ottawa Islands in eastern Hudson Bay are on strike with and believed to form a continuation of similar units of the Cape Smith Belt 150 km to the northeast. Units sampled in the Ottawa Islands all dip gently to the west and hence are not suitable for an internal fold test of their age of magnetization. However, before correcting for the tilt of the lavas, the dominant magnetization direction (D = 207.6°, I = 61.9°, k = 168, α95 = 3.7°) does not differ significantly from the uncorrected magnetization direction reported from the steeply dipping, northwest-facing units at Cape Smith (D = 218°, I = 60°, k = 47, α95 = 4°). This negative fold test suggests that the remanence at both locations was acquired after folding. Comparison with the North American Precambrian apparent polar wander path implies that overprinting is related to the Hudsonian Orogeny.A second stable magnetization directed to the west with a shallow inclination is superimposed on the dominant component at a number of sampling sites. Its direction is poorly defined and no fold test is possible. However, magnetic evidence suggests that this component was probably acquired as an overprint after the dominant magnetization, perhaps during a mild reheating associated with the Elsonian Orogeny.


1991 ◽  
Vol 104 (1) ◽  
pp. 29-40 ◽  
Author(s):  
Zhong Zheng ◽  
Masaru Kono ◽  
Hideo Tsunakawa ◽  
Gaku Kimura ◽  
Qingyun Wei ◽  
...  

1983 ◽  
Vol 20 (2) ◽  
pp. 246-258 ◽  
Author(s):  
K. L. Buchan ◽  
W. F. Fahrig ◽  
G. N. Freda ◽  
R. A. Frith

Alternating field and thermal demagnetization study of the Lac St-Jean anorthosite and related rock units in the central portion of the exposed Grenville Province reveals two components of magnetization, one of reversed and the other of normal polarity. Both components are thought to have been acquired during the last regional metamorphism, which was sufficiently intense in this area (mostly amphibolite grade) to reset any earlier magnetization. Corresponding paleopoles at 193°W, 8°S (dm = 7.3°, dp = 4.6°) and 213°W, 19°S (dm = 10.5°, dp = 8.5°) lie along the 950–900 Ma segment of the recently calibrated Grenville track of the North American apparent polar wander path, a track that has thus far been defined largely by results from rock units of the western Grenville.


1993 ◽  
Vol 30 (9) ◽  
pp. 1886-1897 ◽  
Author(s):  
Richard E. Ernst ◽  
Kenneth L. Buchan

The trace of the Middle Proterozoic Logan Loop of the North American apparent polar wander path is controversial. The older 1270–1110 Ma limb of the loop is poorly constrained, while the depth of the loop, based on the 1110–1080 Ma Keweenawan data of the younger limb, is thought by some to be largely an artifact of reversal asymmetry in the Earth's magnetic field. Paleomagnetism of the 1141 Ma Abitibi mafic dyke swarm is one of the keys to constraining the geometry of the Logan Loop.Unfortunately, previous paleomagnetic studies failed to distinguish dykes of the northeast-trending Middle Proterozoic olivine-bearing Abitibi swarm from subparallel Early Proterozoic olivine-free Biscotasing (formerly Preissac) dykes, and hence paleomagnetic poles determined in these studies should no longer be used. In the present study, sampling of eight Abitibi dykes has identified 23 normally magnetized sites in four dykes and, for the first time, five reversely magnetized sites in three dykes. One of the normally magnetized sites corresponds to the locality for which a high-precision U–Pb age was previously reported. A baked contact test establishes that the characteristic remanence of one normally magnetized dyke is primary. In addition, sites along individual dykes exhibit much smaller secular variation than is observed between dykes, indicating that the remanences of the other dykes are also primary. One of the normally magnetized dykes, the 700 km long Great Abitibi dyke, exhibits two primary directions that correspond to two geochemically distinct magma pulses. The five normally magnetized units, which consist of four separate dykes plus the second pulse of the Great Abitibi dyke, yield a well-defined mean paleomagnetic pole at 42.8°N, 151.5°W, dm = 16.3°, dp = 12.5°. It falls close to the reversely magnetized poles from the Keweenawan Track and establishes a minimum depth for the Logan Loop of about 40°. The reversed-polarity data from three other dykes are more scattered and may not average out secular variation. Hence, the present study is inconclusive regarding asymmetry of the Earth's magnetic field at 1141 Ma, even though a mean pole based on combined normal-and reversed-polarity dykes is indistinguishable from that based on normal-polarity dykes alone.


1991 ◽  
Vol 96 (B9) ◽  
pp. 14239-14262 ◽  
Author(s):  
Roberto S. Molina-Garza ◽  
John W. Geissman ◽  
Rob Van der Voo ◽  
Spencer G. Lucas ◽  
Steve N. Hayden

1973 ◽  
Vol 10 (7) ◽  
pp. 1099-1108 ◽  
Author(s):  
D. T. A. Symons

The Upper Jurassic Topley Intrusions intrude rocks of the tectonically stable Interior Plateau in central British Columbia. A stable primary remanent magnetization of both normal and reversed polarity was isolated after a.f. demagnetization in 19 of 22 sites (109 cores; 208 specimens) representing several of the plutonic units present in this sialic complex of quartz monzonite affinity near Endako, B.C. The unit mean remanence directions support some petrological correlations suggested by Carr, Bright, and White et al., but do not support others. The pole position derived from 13 sites representing 6 plutonic units with a K–Ar radiomelric age of 139 ± 4 m.y. (White et al.) is 128.6 °E, 70.0 °N(δm = 14.4°; δp = 11.4°). This position indicates a smooth polar wander path during the Jurassic between the well defined Upper Triassic and Lower Cretaceous pole positions. It also indicates that the northern Interior Plateau has not been tectonically rotated or translated since emplacement relative to the stable North American craton.


1977 ◽  
Vol 14 (5) ◽  
pp. 1128-1138 ◽  
Author(s):  
Steven G. Henry ◽  
Frederick J. Mauk ◽  
Rob Van der Voo

The natural remanent magnetization of the upper Keweenawan Nonesuch Shale and Freda Sandstone has been analyzed with thermal, alternating field, and chemical demagnetization techniques. The results of this study are in good agreement with previously published works by DuBois and by Vincenz and Yaskawa, but place a tighter constraint on the North American apparent polar wander path. Fifty-eight samples, representing nearly 900 m of section, have been collected from the flanks of the Porcupine Mountain uplift. From principally thermal demagnetization analyses, a mean direction of primary magnetization has been calculated for the Nonesuch Shale, with declination 279.8°, inclination +9.8°, yielding a virtual geomagnetic pole position at 176.5° E, 10.3° N, and for the Freda Sandstone, with declination 271.3° inclination + 0.7°, yielding a virtual geomagnetic pole at 179.5° E, 1.2° N. A group of intermediate (secondary) components of magnetization is removed between temperatures of 350 °C and 550 °C, yielding well clustered directions. Its mean direction with declination 280.6°, inclination −9.5°, resulted in a virtual geomagnetic pole at 169.2° E, 3.7° N. This secondary magnetization is assumed to be of chemical origin and is most likely associated with the late Precambrian copper mineralization of the Nonesuch Shale. By thorough sampling of the stratigraphic column it is possible to infer the general direction of motion of a plate as the sediments were deposited. The motion of the North American plate as observed in the upper Keweenawan magnetizations is in agreement with the previously published polar wander paths for the late Precambrian.


Sign in / Sign up

Export Citation Format

Share Document