Provenance of igneous clasts in conglomerates of the Archaean Timiskaming Group, Kirkland Lake area, Abitibi greenstone belt, Canada

1994 ◽  
Vol 31 (12) ◽  
pp. 1749-1762 ◽  
Author(s):  
Marc I. Legault ◽  
Keiko Hattori

Four types of igneous clasts from Timiskaming conglomerates of the Kirkland Lake area are identified: calc-alkaline porphyry, trachyte (K2O + N2O > 7.25 wt.%), trondhjemite, and tholeiitic basalt. Clasts derived from quartz–carbonate veins and carbonatized porphyries and komatiites indicate CO2-rich hydrothermal activity along the Larder Lake – Cadillac Fault before sedimentation. Calc-alkaline porphyry, the predominant clast, is similar in appearance to feldspar porphyry intrusions widely exposed in the area, but the two are not related. The porphyry clasts are cogenetic with diorite–granodiorite intrusions and volcanic rocks of the greenstone belt. Andesite clasts are only observed near the base of the assemblage, and the ratio of basalt to andesite increases up stratigraphic sections. The change suggests progressive erosion of arc-related volcanic rocks during sedimentation. Composition, texture, and mineralogy of the trondhjemite clasts are consistent with their derivation from the marginal phases of the Round Lake batholith. Intrusive rocks of the Timiskaming Group (coarse-grained holocrystalline syenitic–monzonitic rocks, biotite-bearing feldspar porphyries, and mica-rich lamprophyres) were not observed in the clasts, which suggests sedimentation prior to unroofing of these rocks. Sedimentation of the conglomerates postdated unroofing of underlying plagioclase porphyry (~2685 Ma), but predated unroofing of Timiskaming intrusions. The distribution of alkaline clasts only in proximity to the fault implies that alkaline magmatism was confined along the fault. Derivation of clasts from both sides of the fault and proximity of inferred sources support a pull-apart basin for sedimentation with minor strike-slip movement during and after the sedimentation.


1984 ◽  
Vol 21 (6) ◽  
pp. 731-736 ◽  
Author(s):  
Nathan L. Green ◽  
Paul Henderson

A suite of hy-normative hawaiites, ne-normative mugearite, and calc-alkaline andesitic rocks from the Garibaldi Lake area exhibits fractionated, slightly concave-upward REE patterns (CeN/YbN = 4.5–15), heavy REE contents about 5–10 times the chondritic abundances, and no Eu anomalies. It is unlikely that the REE patterns provide information concerning partial melting conditions beneath southwestern British Columbia because they have probably been modified substantially by upper crustal processes including crustal contamination and (or) crystal fractionation. The REE contents of the Garibaldi Lake lavas are not incompatible with previous interpretations that (1) the hawaiites have undergone considerable fractionation of olivine, plagioclase, and clinopyroxene; and (2) the individual andesitic suites were derived from separate batches of chemically distinct magma that evolved along different high-level crystallization trends. In general, however, the andesites are characterized by lower light REE contents than the basaltic andesites. These differences in LREE abundances may reflect different amounts of LREE-rich accessory phases, such as apatite, sphene, or allanite, assimilated from the underlying quartz diorites.



2006 ◽  
Vol 11 ◽  
pp. 101-114 ◽  
Author(s):  
Henrik Stendal ◽  
Karsten Secher ◽  
Robert Frei

Pb-isotopic data for magnetite from amphibolites in the Nagssugtoqidian orogen, central West Greenland, have been used to trace their source characteristics and the timing of metamorphism. Analyses of the magnetite define a Pb-Pb isochron age of 1726 ± 7 Ma. The magnetite is metamorphic in origin, and the 1726 Ma age is interpreted as a cooling age through the closing temperature of magnetite at ~600°C. Some of the amphibolites in this study come from the Naternaq supracrustal rocks in the northern Nagssugtoqidian orogen, which host the Naternaq sulphide deposit and may be part of the Nordre Strømfjord supracrustal suite, which was deposited at around 1950 Ma ago. Pb-isotopic signatures of magnetite from the Arfersiorfik quartz diorite in the central Nagssugtoqidian orogen are compatible with published whole-rock Pb-isotopic data from this suite; previous work has shown that it is a product of subduction-related calc-alkaline magmatism between 1920 and 1870 Ma. Intrusion of pegmatites occurred at around 1800 Ma in both the central and the northern parts of the orogen. Pegmatite ages have been determined by Pb stepwise leaching analyses of allanite and monazite, and source characteristics of Pb point to an origin of the pegmatites by melting of the surrounding late Archaean and Palaeoproterozoic country rocks. Hydrothermal activity took place after pegmatite emplacement and continued below the closure temperature of magnetite at 1800– 1650 Ma. Because of the relatively inert and refractory nature of magnetite, Pb-isotopic measurements from this mineral may be of help to understand the metamorphic evolution of geologically complex terrains.



2019 ◽  
Vol 27 (2) ◽  
pp. 161-186
Author(s):  
A. B. Vrevskii

The paper reports new data on the composition and age of the Neoarchean calc-alkaline volcanic rocks of the Uraguba–Kolmozero–Voron’ya greenstone belt (UKV GB). Petrological-geochemical modeling indicates a polygenetic origin of primary melts of the basalt–andesite–dacite association and non-subduction geodynamic mechanisms for the crustal growth in the largest greenstone belt of the Kola–Norwegian Block of the Fennoscandian shield.



1976 ◽  
Vol 13 (2) ◽  
pp. 348-354 ◽  
Author(s):  
J. P. N. Badham ◽  
R. D. Morton

The Camsell River area comprises a roof pendant of volcanic rocks within an Aphebian (~1800 m.y.) orogenic belt. Magnetite–apatite intrusions and related bodies are common and are closely associated with plutons of intermediate composition. The magnetitic intrusions are interpreted as immiscible liquids that separated from a magma of intermediate composition. The immiscible fractions were predominantly crystalline when they reached their present higher levels, and final emplacement was facilitated by volatile-streaming and fluidization. Their presence in the orogenic belt is taken as further support for the hypothesis that the orogen was of Andean type.



2017 ◽  
Vol 50 (4) ◽  
pp. 1903
Author(s):  
P. Koutsovitis ◽  
C. Kanellopoulos ◽  
S. Passa ◽  
K. Foni ◽  
E. Tsapara ◽  
...  

The Lapis Lacedaemonius (krokeatis lithos) is a well-known meta-volcanic rock of great historical importance. Petrographic observations, mineral chemistry data, as well as geochemical analysis of selected samples, reveal that these rocks are porphyritic metabasaltic rocks which have been significantly affected by saussuritization and also by restricted silicification processes. They represent subduction related calc-alkaline volcanic rocks which also appear in the adjacent Hellenic Triassic volcanic outcrops, and appear to be associated with the rift/drift phase within the Pindos oceanic realm. The unique features of the Lapis Lacedaemonius, when compared to geochemically similar volcanic rock outcrops, are mainly attributed to their distinct porphyritic textures, predominantly with microlithically textured groundmass along with the coarse grained plagioclase, and to saussuritization processes. The Lapis Lacedaemonius seems to have been formed in a sub-volcanic system closely associated with epidosites, suggesting that metasomatism occurred within hydrothermal upflow zones.



2013 ◽  
Vol 47 (1) ◽  
pp. 477 ◽  
Author(s):  
P. Voudouris ◽  
I. Psimis ◽  
C. Mavrogonatos ◽  
C. Kanellopoulos ◽  
M. Kati ◽  
...  

Epithermal-altered volcanic rocks in Greece host gem-quality amethyst veins in association with various silicates, carbonates, oxides, sulfides and halides. Host rocks are Oligocene to recent calc-alkaline to shoshonitic lavas and pyroclastics of intermediate- to acid composition. The amethyst-bearing veins occur in the periphery of porphyry-type and/or high-sulfidation epithermal mineralized centers in northern Greece (e.g. Sapes, Kirki, Kornofolia/Soufli, Lesvos island) and on Milos island in the active Aegean Volcanic Arc. Hydrothermal alteration around the quartz veins includes sericitic, K-feldspar (adularia), argillic, propylitic and zeolitic types. Precipitation of amethyst in the northern Greece occurrences, took place during the final stages of the magmatic-hydrothermal activity from near-neutral to alkaline fluids, as indicated by the presence of gangue adularia, calcite, smectite, chlorite, sericite, pyrite, zeolites (laumontite, heulandite, clinoptilolite), analcime and minor amounts of barite, halite, epidote and fluorite in the quartz veins. Amethyst at Milos Island (Chondro Vouno and Kalogries-Vani areas), is accompanied by barite, smectite and lepidocrocite. Colloform-crustiform banding with alternations of amethyst, chalcedony and/or carbonates is a common characteristic of the studied amethyst-bearing veins. Fluid inclusion- and mineralogical data suggest that the studied amethyst were formed at: 174-246 °C (Sapes area), 100-175 °C (Kirki and Kornofolia areas) and 223-234°C (Lesvos island). The amethyst formation requires oxidizing conditions and is probably the result of mixing between meteoric or seawater with upwelling hydrothermal fluids. The involvement of seawater in the studied mineralization is supported by the presence of halite and abundant barite in the veins. Finally, the studied amethyst deposits should be evaluated as potential gemstone sources in Greece.



2021 ◽  
Author(s):  
D. Yergeau ◽  
P. Mercier-Langevin ◽  
B. Dubé ◽  
M. Malo ◽  
A. Savoie

Abstract The Westwood deposit (4.5 Moz Au) is hosted in the 2699–2695 Ma Bousquet Formation volcanic and intrusive rocks, in the eastern part of the Blake River Group, southern Abitibi greenstone belt. The Bousquet Formation is divided in two geochemically distinct members: a mafic to intermediate, tholeiitic to transitional lower member and an intermediate to felsic, transitional to calc-alkaline upper member. The Bousquet Formation is cut by the synvolcanic (2699–2696 Ma) polyphase Mooshla Intrusive Complex, which is cogenetic with the Bousquet Formation. The deposit contains three strongly deformed (D2 flattening and stretching), steeply S-dipping mineralized corridors that are stacked from north to south: Zone 2 Extension, North Corridor, and Westwood Corridor. The North and Westwood corridors are composed of Au-rich polymetallic sulfide veins and stratabound to stratiform disseminated to massive sulfide ore zones that are spatially and genetically associated with the calcalkaline, intermediate to felsic volcanic rocks of the upper Bousquet Formation. The formation of the disseminated to semimassive ore zones is interpreted as strongly controlled by the replacement of porous volcaniclastic rocks at the contact with more impermeable massive cap rocks that helped confine the upflow of mineralizing fluids. The massive sulfide lenses are spatially associated with dacitic to rhyolitic domes and are interpreted as being formed, at least in part, on the paleoseafloor. The epizonal, sulfide-quartz vein-type ore zones of the Zone 2 Extension are associated with the injection of subvolcanic, calc-alkaline felsic sills and dikes within the lower Bousquet Formation. These subvolcanic intrusive rocks, previously interpreted as lava flows, are cogenetic and coeval with the intermediate to felsic lava flows and domes of the upper Bousquet Formation. The change from fractional crystallization to assimilation- and fractional crystallization-dominated processes and transitional to calc-alkaline magmatism is interpreted to be responsible for the development of the auriferous ore-forming system. The Westwood deposit is similar to some Phanerozoic Au ± base metal-rich magmatic-hydrothermal systems, both in terms of local volcano-plutonic architecture and inferred petrogenetic context. The complex volcanic evolution of the host sequence at Westwood, combined with its proximity to a polyphase synvolcanic intrusive complex, led to the development of one of the few known large Archean subaqueous Au-rich magmatic-hydrothermal systems.



1990 ◽  
Vol 27 (5) ◽  
pp. 649-656 ◽  
Author(s):  
A. Turek ◽  
R. Keller ◽  
W. R. Van Schmus

The Mishibishu greenstone belt, located 40 km west of Wawa, is a typical Archean greenstone belt and is probably an extension of the Michipicoten belt. This belt is composed of basic to felsic metavolcanic rocks of tholeiitic to calc-alkaline affinity and of metasedimentary rocks ranging from conglomerate to argillite. Granitoids, diorites, and gabbros intrude and embay supracrustal rocks as internal and external plutons.Six U–Pb zircon ages have been obtained on rocks in this area. The oldest is 2721 ± 4 Ma for the Jostle Lake tonalite. The bulk of the volcanic rocks formed by 2696 ± 17 Ma, which is the age of the Chimney Point porphyry at the top of the volcanic pile. The Pilot Harbour granite has a similar age of 2693 ± 7 Ma. The age of the Tee Lake tonalite is 2673 ± 12 Ma, and the age of the Iron. Lake gabbro is 2671 ± 4 Ma. The youngest age for volcanics in this part of the Superior Province is 2677 ± 7 Ma, obtained from, the David Lakes pyroclastic breccia. these ages agree with those reported for the adjacent Michipicoten and Gamitagama belts.





2009 ◽  
Vol 60 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Zoltán Pécskay ◽  
Ioan Seghedi ◽  
Marinel Kovacs ◽  
Alexandru Szakács ◽  
Alexandrina Fülöp

Geochronology of the Neogene calc-alkaline intrusive magmatism in the "Subvolcanic Zone" of the Eastern Carpathians (Romania)The Poiana Botizei-Ţibleş-Toroiaga-Rodna-Bârgâu intrusive area (PBTTRB), northwest Romania, known as the "Subvolcanic Zone", is located between the Gutâi (NW) and Câlimani (SE) volcanic massifs. It consists of rocks displaying a wide range of compositions and textures: equigranular or porphyritic with holocrystalline groundmass (gabbro-diorites, diorites, monzodiorites and granodiorites), and/or porphyritic with fine holocrystalline or glassycryptocrystalline groundmass, similar with effusive rocks: basalts, basaltic andesites, andesites, dacites and rhyolites. The time-span of intrusive rocks emplacement is similar with the nearest calc-alkaline volcanic rocks from Gutâi (NW) and Câlimani (SE) massifs. They are represented by stocks, laccoliths, dykes and sills typical for an upper crustal intrusive environment. In the absence of biostratigraphic evidence, a comprehensive K-Ar study of intrusive rocks using whole rock samples, groundmass and monomineral fractions (biotite, hornblende) has been carried out in order to understand the magmatic evolution of the area. The oldest K-Ar ages recorded in the analysed rocks are close to 11.5 Ma and magmatism continued to develop until about 8.0 Ma. The inception of intrusion emplacement in the PBTTRB is coeval with intrusive activity spatially related to volcanism within the neighbouring Gutâi and Câlimani massifs. However, its culmination at ca. 8 Ma ago is younger than the interruption of this activity at ca. 9.2 Ma in Gutâi and Câlimani Mts where intrusive activity resumed for ca. 1 Myr. These circumstances strongly suggest that the geodynamic evolution of the area controlled the development of both volcanic and intrusive activity and their reciprocal relationships. The overall geological data suggest that in the PBTTRB intra-lithospheric transpressional-transtensional tectonic processes controlled the generation and emplacement of intrusive bodies between ca. 12-8 Ma.



Sign in / Sign up

Export Citation Format

Share Document