scholarly journals Transgenerational marking of embryonic otoliths in marine fishes using barium stable isotopes

2006 ◽  
Vol 63 (6) ◽  
pp. 1193-1197 ◽  
Author(s):  
Simon R Thorrold ◽  
Geoffrey P Jones ◽  
Serge Planes ◽  
Jonathan A Hare

We describe a new technique for transgenerational marking of embryonic otoliths that promises significant advancements in the study of larval dispersal and population connectivity in marine fishes. The approach is based on maternal transmission of 137Ba from spawning females to egg material that is ultimately incorporated into the otoliths of embryos produced by an individual after exposure to the isotope. We injected females of a benthic-spawning clownfish (Amphiprion melanopus) and a pelagic-spawning serranid (Centropristis striata) with enriched 137BaCl2 and then reared the resulting progeny through to settlement. Barium isotope ratios in the cores of larval otoliths were quantified using laser ablation inductively coupled plasma mass spectrometry. Larval otoliths from both species contained unequivocal Ba isotope signatures over a wide range of doses (0.8–23 µg 137Ba·g female–1). Female A. melanopus continued to produce marked larvae over multiple clutches and for at least 90 days after a single injection. The ability to administer different combinations of stable Ba isotopes provides a new means of mass-marking larvae of benthic- and pelagic-spawning fishes from multiple populations over extended spawning periods.


2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Laura Matarredona ◽  
Mónica Camacho ◽  
Basilio Zafrilla ◽  
Gloria Bravo-Barrales ◽  
Julia Esclapez ◽  
...  

Haloarchaea can survive and thrive under exposure to a wide range of extreme environmental factors, which represents a potential interest to biotechnology. Growth responses to different stressful conditions were examined in the haloarchaeon Haloferax mediterranei R4. It has been demonstrated that this halophilic archaeon is able to grow between 10 and 32.5% (w/v) of sea water, at 32–52 °C, although it is expected to grow in temperatures lower than 32 °C, and between 5.75 and 8.75 of pH. Moreover, it can also grow under high metal concentrations (nickel, lithium, cobalt, arsenic), which are toxic to most living beings, making it a promising candidate for future biotechnological purposes and industrial applications. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis quantified the intracellular ion concentrations of these four metals in Hfx. mediterranei, concluding that this haloarchaeon can accumulate Li+, Co2+, As5+, and Ni2+ within the cell. This paper is the first report on Hfx. mediterranei in which multiple stress conditions have been studied to explore the mechanism of stress resistance. It constitutes the most detailed study in Haloarchaea, and, as a consequence, new biotechnological and industrial applications have emerged.



Author(s):  
Mark Golitko ◽  
Laure Dussubieux

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a versatile technique capable of measuring nearly every element on the Periodic Table down to extremely low concentrations. Using liquid sampling, it is a powerful method for bulk compositional characterization but has been only sporadically applied to archaeological ceramic studies. With laser ablation sampling, ICP-MS can be used to produce spatially resolved chemical information and has a wide range of archaeological applications including the analysis of ceramic surface treatments, paste composition, temper composition, and identification of post-burial chemical alteration. ICP-MS and LA-ICP-MS are particularly valuable when used in conjunction with bulk and mineralogical characterization techniques to elucidate which potential cultural, geological, or environmental effects are responsible for bulk compositional patterning, as well as providing complimentary compositional provenance information for individual phases of ceramic paste.



2020 ◽  
Vol 8 (12) ◽  
pp. 1889
Author(s):  
Annie Vera Hunnestad ◽  
Anne Ilse Maria Vogel ◽  
Evelyn Armstrong ◽  
Maria Guadalupe Digernes ◽  
Murat Van Ardelan ◽  
...  

Iron is an essential, yet scarce, nutrient in marine environments. Phytoplankton, and especially cyanobacteria, have developed a wide range of mechanisms to acquire iron and maintain their iron-rich photosynthetic machinery. Iron limitation studies often utilize either oceanographic methods to understand large scale processes, or laboratory-based, molecular experiments to identify underlying molecular mechanisms on a cellular level. Here, we aim to highlight the benefits of both approaches to encourage interdisciplinary understanding of the effects of iron limitation on cyanobacteria with a focus on avoiding pitfalls in the initial phases of collaboration. In particular, we discuss the use of trace metal clean methods in combination with sterile techniques, and the challenges faced when a new collaboration is set up to combine interdisciplinary techniques. Methods necessary for producing reliable data, such as High Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS), Flow Injection Analysis Chemiluminescence (FIA-CL), and 77K fluorescence emission spectroscopy are discussed and evaluated and a technical manual, including the preparation of the artificial seawater medium Aquil, cleaning procedures, and a sampling scheme for an iron limitation experiment is included. This paper provides a reference point for researchers to implement different techniques into interdisciplinary iron studies that span cyanobacteria physiology, molecular biology, and biogeochemistry.



2008 ◽  
Vol 72 (2) ◽  
pp. 593-605 ◽  
Author(s):  
N. M. Halden ◽  
L. A. Friedrich

AbstractOtoliths, the earbones of teleost (bony) fish, are constructed from alternating layers of aragonite and protein. Laser ablation inductively coupled plasma mass spectrometry and proton-induced X-ray emission are used to obtain spatially well-resolved trace element line-scans that show trace-element concentrations are correlated with the annular structure. Zoned Sr and Zn signatures are common whereas other elements such as Cu, Pb, Li and Cs can be related to the proximity of mineral deposits. Aragonite in otoliths can incorporate a wide range of trace elements at the low-ppm level including alkali- and alkaline-earth elements and base metals; Se has also been detected in proximity to coal mines. These trace elements, in combination with the annular structures, are an important archive for recording information on environments occupied by fish, environmental change and exposure to pollutants.



2012 ◽  
Vol 268-270 ◽  
pp. 637-641
Author(s):  
Wei Yi ◽  
Hong Jun Wang ◽  
Ting Zhou

Analyses of REEs in 25 bulk samples collected from the Late Permian Longtan Formation in Mount Huaying district of Sichuan Province were determined useing Inductively Coupled Plasma Mass Spectrometry. The results indicate that REEs patterns are not controlled by materials from the sea, whereas the contribution of land plants is less than 0.5%. The ultimate sources of REEs are from terrigenous material as indicated by negative Eu anomaly. The Mount Emei basalt contributes to REEs enrichment of study area and all samples belong to the LREE-rich type and are enriched in LREEs relative to HREEs. So the sources of REEs are controlled by terrigenous material of Mount Emei basalt. Rare earths are an interesting group of metals that have recently become quite useful in high tech, and today they are strategic materials in the world economy. Besides, REEs play a key role in the green energy sector, REEs wide range of uses.



2018 ◽  
Vol 82 (1) ◽  
pp. 59-88 ◽  
Author(s):  
Luke L. George ◽  
Nigel J. Cook ◽  
Bryony B. P. Crowe ◽  
Cristiana L. Ciobanu

ABSTRACTConcentration data are reported for 18 trace elements in chalcopyrite from a suite of 53 samples from 15 different ore deposits obtained by laser-ablation inductively-coupled plasma-mass spectrometry. Chalcopyrite is demonstrated to host a wide range of trace elements including Mn, Co, Zn, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi. The concentration of some of these elements can be high (hundreds to thousands of ppm) but most are typically tens to hundreds of ppm. The ability of chalcopyrite to host trace elements generally increases in the absence of other co-crystallizing sulfides. In deposits in which the sulfide assemblage recrystallized during syn-metamorphic deformation, the concentrations of Sn and Ga in chalcopyrite will generally increase in the presence of co-recrystallizing sphalerite and/or galena, suggesting that chalcopyrite is the preferred host at higher temperatures and/or pressures. Trace-element concentrations in chalcopyrite typically show little variation at the sample scale, yet there is potential for significant variation between samples from any individual deposit. The Zn:Cd ratio in chalcopyrite shows some evidence of a systematic variation across the dataset, which depends, at least in part, on temperature of crystallization. Under constant physiochemical conditions the Cd:Zn ratios in co-crystallizing chalcopyrite and sphalerite are typically approximately equal. Any distinct difference in the Cd:Zn ratios in the two minerals, and/or a non-constant Cd:Zn ratio in chalcopyrite, may be an indication of varying physiochemical conditions during crystallization.Chalcopyrite is generally a poor host for most elements considered harmful or unwanted in the smelting of Cu, suggesting it is rarely a significant contributor to the overall content of such elements in copper concentrates. The exceptions are Se and Hg which may be sufficiently enriched in chalcopyrite to exceed statutory limits and thus incur monetary penalties from a smelter.



2016 ◽  
Vol 31 (7) ◽  
pp. 1515-1526 ◽  
Author(s):  
Timo Hopp ◽  
Mario Fischer-Gödde ◽  
Thorsten Kleine

We developed a new technique for precise measurements of ruthenium (Ru) stable isotope compositions by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS).



Nukleonika ◽  
2018 ◽  
Vol 63 (4) ◽  
pp. 131-137
Author(s):  
Marcin Rogowski ◽  
Tomasz Smoliński ◽  
Marta Pyszynska ◽  
Marcin Brykała ◽  
Andrzej G. Chmielewski

Abstract The use of radiotracers in the present study is intended to replace traditional steps of metal quantitative analysis (solution sampling and instrumental chemical analysis) and to allow real-time measurements of metal concentrations during the leaching process. In this study, 64Cu, an isotope of copper, was selected as a radiotracer. Samples of copper flotation tailings were irradiated in the Maria research reactor (Świerk, Poland) and mixed with an inactive portion of the milled fl otation waste. The leaching process was carried out in a glass reactor, and the radiation spectrum was measured using a gamma spectrometer. The material was then treated using various acids (sulphuric acid, nitric acid, acetic acid, citric acid, and ascorbic acid) in a wide range of their concentrations. Experiments with the radiotracer were conducted in sulphuric and nitric acids. The amount of the leached metal (copper) was calculated on the basis of the peak area ratio in the gamma-ray spectrum of the activated tailings and standard samples. Inductively coupled plasma mass spectrometry (ICP-MS) was also used to analyse the metal content. Maximum recovery of 56% Cu was achieved using 9 M HNO3, whereas the recovery was lowest for ascorbic acid (<1%). Both analytical methods were compared, and the results presented in this paper are in good agreement with radiometric measurements obtained using ICP-MS analysis.



Sign in / Sign up

Export Citation Format

Share Document