Sexual Dimorphism in the Adipose Fin of Pacific Salmon (Oncorhynchus)

1983 ◽  
Vol 40 (11) ◽  
pp. 2019-2024 ◽  
Author(s):  
Terry D. Beacham ◽  
Clyde B. Murray

Male adipose fins of Oncorhynchus species were 30–50% larger than those of same-sized females, the actual amount depending on the species. Accuracy of classification of the standards ranged from 87% in chinook salmon (O. tshawytscha) to 98% in pink salmon (O. gorbuscha). Testing the method on new samples usually resulted in an accuracy of at least 90% correct identification of sex for any species. Relative size of the adipose fin should allow for easy and accurate external identification of the sexes of silver-bright Oncorhynchus.

<em>Abstract</em>.-Pacific salmon <em>Oncorhynchus </em>spp. catches are at historic high levels. It is significant that one of the world's major fisheries for a group of species that dominates the surface waters of the subarctic Pacific is actually very healthy. Natural trends in climate are now recognized to cause large fluctuations in Pacific salmon production, as shown in historical records of catch and recent changes probably have been affected by greenhouse gas induced climate changes. Pink salmon <em>O. gorbuscha </em>and chum salmon <em>O. keta </em>production and catch has increased in the past 30 years and may continue in a similar trend for for the next few decades. Coho salmon <em>O. kisutch </em>and Chinook salmon <em>O. tshawytscha </em>catches have been declining for several decades, particularly at the southern end of their range, and they may continue to decline. In the 1970s, hatcheries were considered to be a method of adding to the wild production of coho and Chinook salmon because the ocean capacity to produce these species was assumed to be underutilized. Large-scale changes in Pacific salmon abundances are linked to changes in large-scale atmospheric processes. These large-scale atmospheric processes are also linked to planetary energy transfers, and there is a decadal scale pattern to these relationships. Pacific salmon production in general is higher in decades of intense Aleutian lows than in periods of weak Aleutian lows. Key to understanding the impact of climate change on Pacific salmon is understanding how the Aleutian low will change. Chinook and coho salmon are minor species in the total commercial catch, but important socially and economically in North America. A wise use of hatcheries may be needed to maintain abundances of these species in future decades.


2000 ◽  
Vol 57 (6) ◽  
pp. 1252-1257 ◽  
Author(s):  
Yolanda Morbey

Protandry, the earlier arrival of males to the spawning grounds than females, has been reported in several studies of Pacific salmon (Oncorhynchus spp.). However, the reasons for protandry in salmon are poorly understood and little is known about how protandry varies among and within populations. In this study, protandry was quantified in a total of 105 years using gender-specific timing data from seven populations (one for pink salmon (O. gorbuscha), three for coho salmon (O. kisutch), two for sockeye salmon (O. nerka), and one for chinook salmon (O. tshawytscha)). Using a novel statistical procedure, protandry was found to be significant in 90% of the years and in all populations. Protandry may be part of the males' strategy to maximize mating opportunities and may facilitate mate choice by females.


1995 ◽  
Vol 52 (3) ◽  
pp. 532-540 ◽  
Author(s):  
Miki Ogura ◽  
Yukimasa Ishida

Four sockeye salmon (Oncorhynchus nerka), two chum salmon (O. keta), three pink salmon (O. gorbuscha), and four Chinook salmon (O. tshawytscha) with depth-sensing ultrasonic transmitters were tracked in the central Bering Sea to examine migration in the open sea. Ground speeds of maturing sockeye, chum, and pink salmon were at 0.54–0.66 m/s (0.88–1.17 fork lengths/s). Chinook salmon, probably immature fish, moved more slowly (0.34 m/s). Maturing individuals moved in particular directions and maintained their ground speeds and directions during day and night. The results also suggested that salmon had a compass orientation ability functioning without celestial information. Sockeye, chum, and pink salmon showed strong surface preferences but chinook salmon swam deeper (30–35 m) than did the other species.


1988 ◽  
Vol 66 (1) ◽  
pp. 266-273 ◽  
Author(s):  
C. B. Murray ◽  
J. D. McPhail

Embryo and alevin survival, time to hatching and emergence, and alevin and fry size of five species of Pacific salmon (Oncorhynchus) were observed at five incubation temperatures (2, 5, 8, 11, and 14 °C). No pink (Oncorhynchus gorbuscha) or chum (O. keta) salmon embryos survived to hatching at 2 °C. Coho (O. kisutch) and sockeye (O. nerka) salmon had higher embryo survival at 2 °C than chinook (O. tschawytscha) salmon. At 14 °C, chum, pink, and chinook salmon had higher embryo survival than coho or sockeye salmon. In all species, peaks of embryo mortality occurred at specific developmental stages (completion of epiboly, eye pigmentation, and hatching). Alevin survival to emergence was high for all species, except for coho and pink salmon at 14 °C. Hatching and emergence time varied inversely with incubation temperature, but coho salmon hatched and emerged sooner at all temperatures than the other species. Coho and sockeye salmon alevins were larger at 2 °C, pink, chum, and chinook salmon alevins were larger at 5 and 8 °C. Coho salmon fry were larger at 2 °C, chinook and chum salmon fry were larger at 5 °C, and sockeye and pink salmon fry were larger at 8 °C. High incubation temperatures reduced fry size in all species. Each species of Pacific salmon appears to be adapted to different spawning times and temperatures, and thus indirectly to specific incubation temperatures, to ensure maximum survival and size and to maintain emergence at the most favorable time each year.


1976 ◽  
Vol 33 (7) ◽  
pp. 1483-1524 ◽  
Author(s):  
W. E. Ricker

Mortality (other than landed catch) caused by pelagic gillnetting is estimated to be equal to the catch, for salmon in their penultimate year of life, and equal to about a quarter of the catch for salmon in their final year of life. Mortality caused by trolling for coho (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha) averages about one fish killed (mostly below legal size) for every two that are boated. The natural mortality rate for sockeye salmon (O. nerka) in their final year of life averages about 0.015 per mo and is somewhat more in earlier years of pelagic life; the greater part of natural mortality after the smolt stage occurs during the downstream migration and early months of "coastal" life. For coho and chinook the best natural mortality estimate for the last year of life is 0.013 per mo, and that for pink (O. gorbuscha) and chum (O. keta) is of the same order. Growth rates during the final growing season vary from 0.26 per mo for pink and coho salmon to 0.06 per mo for chinook in their 5th ocean yr. Gains from ceasing to take immature salmon on the high seas range up to 300% of the catch now being taken in that category, while for fish taken in their final year they range up to about 70%, depending on the time of year at which the fishing is done. Gains from transferring existing pelagic net fisheries to the coastal region would be 76% (North American sockeye) and 86% (Asian sockeye) of the weight of fish now caught pelagically. Gains in total yield of existing salmon fisheries (pelagic and coastal) are estimated as 78% for Asian pink salmon and 72% for Asian sockeye. The increase in weight of the total catch from discontinuing ocean trolling for Columbia River chinook salmon and increasing river fishing correspondingly is estimated tentatively as between 63 and 98%.


Author(s):  
Paul DeCosta ◽  
Kyugon Cho ◽  
Stephen Shemlon ◽  
Heesung Jun ◽  
Stanley M. Dunn

Introduction: The analysis and interpretation of electron micrographs of cells and tissues, often requires the accurate extraction of structural networks, which either provide immediate 2D or 3D information, or from which the desired information can be inferred. The images of these structures contain lines and/or curves whose orientation, lengths, and intersections characterize the overall network.Some examples exist of studies that have been done in the analysis of networks of natural structures. In, Sebok and Roemer determine the complexity of nerve structures in an EM formed slide. Here the number of nodes that exist in the image describes how dense nerve fibers are in a particular region of the skin. Hildith proposes a network structural analysis algorithm for the automatic classification of chromosome spreads (type, relative size and orientation).


Author(s):  
I. R. Khuzina ◽  
V. N. Komarov

The paper considers a point of view, based on the conception of the broad understanding of taxons. According to this point of view, rhyncholites of the subgenus Dentatobeccus and Microbeccus are accepted to be synonymous with the genus Rhynchoteuthis, and subgenus Romanovichella is considered to be synonymous with the genus Palaeoteuthis. The criteria, exercising influence on the different approaches to the classification of rhyncholites, have been analyzed (such as age and individual variability, sexual dimorphism, pathological and teratological features, degree of disintegration of material), underestimation of which can lead to inaccuracy. Divestment of the subgenuses Dentatobeccus, Microbeccus and Romanovichella, possessing very bright morphological characteristics, to have an independent status and denomination to their synonyms, has been noted to be unjustified. An artificial system (any suggested variant) with all its minuses is a single probable system for rhyncholites. The main criteria, minimizing its negative sides and proving the separation of the new taxon, is an available mass-scale material. The narrow understanding of the genus, used in sensible limits, has been underlined to simplify the problem of the passing the view about the genus to the other investigators and recognition of rhyncholites for the practical tasks.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Andrea Y Frommel ◽  
Justin Carless ◽  
Brian P V Hunt ◽  
Colin J Brauner

Abstract Pacific salmon stocks are in decline with climate change named as a contributing factor. The North Pacific coast of British Columbia is characterized by strong temporal and spatial heterogeneity in ocean conditions with upwelling events elevating CO2 levels up to 10-fold those of pre-industrial global averages. Early life stages of pink salmon have been shown to be affected by these CO2 levels, and juveniles naturally migrate through regions of high CO2 during the energetically costly phase of smoltification. To investigate the physiological response of out-migrating wild juvenile pink salmon to these naturally occurring elevated CO2 levels, we captured fish in Georgia Strait, British Columbia and transported them to a marine lab (Hakai Institute, Quadra Island) where fish were exposed to one of three CO2 levels (850, 1500 and 2000 μatm CO2) for 2 weeks. At ½, 1 and 2 weeks of exposure, we measured their weight and length to calculate condition factor (Fulton’s K), as well as haematocrit and plasma [Cl−]. At each of these times, two additional stressors were imposed (hypoxia and temperature) to provide further insight into their physiological condition. Juvenile pink salmon were largely robust to elevated CO2 concentrations up to 2000 μatm CO2, with no mortality or change in condition factor over the 2-week exposure duration. After 1 week of exposure, temperature and hypoxia tolerance were significantly reduced in high CO2, an effect that did not persist to 2 weeks of exposure. Haematocrit was increased by 20% after 2 weeks in the CO2 treatments relative to the initial measurements, while plasma [Cl−] was not significantly different. Taken together, these data indicate that juvenile pink salmon are quite resilient to naturally occurring high CO2 levels during their ocean outmigration.


2021 ◽  
Author(s):  
Kris A. Christensen ◽  
Eric B. Rondeau ◽  
Dionne Sakhrani ◽  
Carlo A. Biagi ◽  
Hollie Johnson ◽  
...  

Pink salmon (Oncorhynchus gorbuscha) adults are the smallest of the five Pacific salmon native to the western Pacific Ocean. Pink salmon are also the most abundant of these species and account for a large proportion of the commercial value of the salmon fishery worldwide. A strict two-year life-history of most pink salmon generates temporally isolated populations that spawn either in even-years or odd-years. To uncover the influence of this genetic isolation, reference genome assemblies were generated for each year-class and whole genome re-sequencing data was collected from salmon of both year-classes. The salmon were sampled from six Canadian rivers and one Japanese river. At multiple centromeres we identified peaks of Fst between year-classes that were millions of base-pairs long. The largest Fst peak was also associated with a million base-pair chromosomal polymorphism found in the odd-year genome near a centromere. These Fst peaks may be the result of centromere drive or a combination of reduced recombination and genetic drift, and they could influence speciation. Other regions of the genome influenced by odd-year and even-year temporal isolation and tentatively under selection were mostly associated with genes related to immune function, organ development/maintenance, and behaviour.


Sign in / Sign up

Export Citation Format

Share Document