Emigration and Production of Hatchery Coho Salmon (Oncorhynchus kisutch) Stocked in Streams Draining an Old-growth and a Clear-cut Watershed

1987 ◽  
Vol 44 (8) ◽  
pp. 1397-1407 ◽  
Author(s):  
Robert E. Bilby ◽  
Peter A. Bisson

Downstream movement of coho salmon fry (Oncorhynchus kisutch) stocked in old-growth and clear-cut watersheds occurred in three phases: (1) a brief period of heavy emigration immediately after stocking, (2) relatively little movement throughout most of the summer, and (3) intermittent heavy emigration during early autumn freshets. Coho emigrated whenever a streamflow change ≥ 3%∙d−1 occurred, but movement nearly ceased at flows above a certain level. Temperature changes were less important than discharge in triggering movement. When high densities were stocked, emigrant fry were smaller than residents. When low densities were stocked, emigration after the initial pulse of downstream movement was generally lower and there were no size differences between emigrants and residents. Production in the clear-cut was greater than in the old-growth watershed. Proportionately fewer fish emigrated from the old-growth stream, but when population densities were high, mortality in the old-growth exceeded the clear-cut. Greater emigration from the clear-cut site was possibly related to a scarcity of pools. Although the old-growth stream possessed better rearing habitat, less food may have been available, as suggested by gross photosynthesis rates 50% lower than in the clear-cut stream. Coho production therefore appeared to be most strongly influenced by trophic conditions, while volitional residency was most strongly influenced by habitat quality.


1989 ◽  
Vol 46 (8) ◽  
pp. 1383-1391 ◽  
Author(s):  
John F. Thedinga ◽  
Michael L. Murphy ◽  
Jonathan Heifetz ◽  
K V. Koski ◽  
Scott W. Johnson

Short-term effects of logging on age composition and size of juvenile coho salmon (Oncorhynchus kisutch) were studied in 18 streams in Southeast Alaska in 1982 and 1983; studies were in old-growth and clear-cut reaches with or without buffer strips. The number of fry (age 0) in summer and winter was proportionately higher in buffered and clear-cut reaches than in old-growth reaches, and all treatments averaged a 20% decrease in fry from summer to winter. Fry length and condition factor were greater for buffered and clear-cut reaches than for old-growth reaches, whereas parr (age 1 and older) size did not differ among treatments. Fry and parr were larger in the southern than in the northern regions and their length and weight were directly related to peripbyton biomass and benthos density. A higher percentage of large [Formula: see text] fry remained in buffered reaches than in clear-cut and old-growth reaches; therefore, the density of fry that were potentially large enough to become smolts the next spring (presmolts) was greater in buffered reaches. The larger fry in buffered and clear-cut reaches compared with old-growth reaches was probably due to earlier fry emergence that resulted from increased water temperature.



1988 ◽  
Vol 45 (3) ◽  
pp. 502-515 ◽  
Author(s):  
L. Blair Holtby

Clear-cut logging of 41% of the basin of Carnation Creek, British Columbia, resulted in increased stream temperatures in all months of the year, increases above prelogging temperatures ranged from 0.7 °C in December to 3.2 °C in August. Earlier emergence of coho salmon (Oncorhynchus kisutch) fry associated with the temperature increases lengthened their summer growing season by up to 6 wk. Fingerlings were significantly larger by the fall in the years after logging compared with the years before logging. The increased size of fingerlings was associated with improved overwinter survival. Following logging, yearling smolt numbers doubled, although 2-yr-old smolt numbers decreased. Warmer spring temperatures were also associated with earlier seaward migration of smolts, probably resulting in decreased smolt-to-aduit survivals. A linked series of models that first predict logging effects on stream temperatures and then the effects of those temperatures on critical coho life history events are developed. The life history model is used to quantify the effects of stream temperature changes related to logging on the population size of adult coho salmon. The predicted effect of those temperature changes was a 9% increase in adult coho numbers prior to the fishery, an increase considerably less than the observed 47% increase in smolt numbers.



1983 ◽  
Vol 61 (5) ◽  
pp. 1120-1127 ◽  
Author(s):  
L. M. Carl

Coho salmon spawning peaked in the late fall. Spawning densities ranged from fewer than 5 coho salmon per hectare up to 90 fish per hectare. Subyearling coho salmon densities ranged from 10 to 60 fish per 100 m2 in June and dropped to 5–20 fish by early fall. Coho salmon fry increased in length from 40 mm in early May, to over 120 mm by smolt out-migration in the following April. Coho salmon instantaneous daily change in density coefficients ranged from 0.004 to 0.019 and were dependent on initial coho density. Daily coho salmon growth rates ranged from 0.38 to 0.60 mm per day and were not dependent on initial coho salmon density. Downstream movement of rainbow trout fry began in May, and continued into July. In the spring 10–20 yearlings and one to five 2-year-olds per 100 m2 were present. Most fry emerged in June at a size of 25 mm and grew to 85 mm by fall. Daily growth rates varied from 0.23 to 0.45 mm per day for yearling rainbow trout and were not correlated with rainbow trout density.



1983 ◽  
Vol 40 (4) ◽  
pp. 452-461 ◽  
Author(s):  
P. J. Tschaplinski ◽  
G. F. Hartman

Numbers of juvenile coho salmon (Oncorhynchus kisutch) in streams are reduced substantially in winter compared to those that occur in summer. Most of this reduction occurs early in autumn with the onset of the first seasonal freshets. Stream sections containing adequate winter habitat in the form of deep pools, log jams, and undercut banks with tree roots and debris lost fewer fish during freshets and maintained higher numbers of coho in winter than sections without these habitat characteristics. These features provide shelter and reduce stream velocities. Microhabitats occupied by coho juveniles in winter after logging were unchanged from those described before logging — all microhabitats were characterized by low water velocities (≤ 0.3 m/s). Up to 48% of the coho population inhabiting stream sections with adequate shelter remained there by midwinter (Jan. 3). This percentage was typical of stream sections where at least some trees remained after logging. Streamside trees stabilized the banks and prevented their collapse. In contrast, two of three study sections that had been clear-cut logged had unstable banks which collapsed during winter freshets. Almost no coho remained in these sections in winter. Many coho emigrate from the main stream to seek the shelter of low-velocity tributaries and valley sloughs concurrent with the decline of coho populations in Carnation Creek during autumn and early winter. This seasonal shift in distribution reverses in the spring when large numbers of coho reenter the main stream. Fish overwintering in these sites have a high apparent survival rate. Before logging a 4-yr mean of 169 ± 44 coho entered one tributary (a slough called 750-m site) in autumn. Of these numbers entering, 72.2% came out in spring. During and after logging, an annual mean of 288 coho entered the same site. The apparent survival rate during and after logging was 67.4%, essentially unchanged from the prelogging value. Logging has neither reduced the numbers of coho juveniles that enter such sites in autumn to overwinter, nor reduced the numbers leaving these sites to reenter Carnation Creek in spring.



1951 ◽  
Vol 8b (4) ◽  
pp. 241-263 ◽  
Author(s):  
William S. Hoar

In fresh water, chum and pink salmon fry form schools or mills, are constantly active both day and night, show positive rheotaxis and move into fast water. This activity takes them into the swiftest currents. At night loss of visual and contact stimuli reduces the intensity of the rheotactic response and results in downstream movement. An active swimming downstream occurs only with unusually high temperatures. Coho salmon fry occupy and defend territory, maintain definite positions in relation to particular objects in their environment, show a less marked tendency to move into fast water and are quiet at night. They are thus displaced downstream to a much lesser degree. Coho smolts, in contrast to the fry, demonstrate a lowered threshold for stimulation both day and night, a tendency to aggregate and a lessening in territory behaviour. During the day smolts group in deeper water or under cover. At night they rise to the surface and manifest increased activity which, in swift water, will result in displacement seaward. Pronounced changes in temperature modify these reactions. Sudden elevation of water levels hastens the downstream displacement.



1992 ◽  
Vol 49 (4) ◽  
pp. 783-789 ◽  
Author(s):  
Thomas E. Nickelson ◽  
Jeffrey D. Rodgers ◽  
Steven L. Johnson ◽  
Mario F. Solazzi

Habitat use by juvenile coho salmon (Oncorhynchus kisutch) during spring, summer, and winter was examined in Oregon coastal streams. Coho salmon fry were most abundant in backwater pools during spring. During summer, juvenile coho salmon were more abundant in pools of all types than they were in glides or riffles. During winter, juvenile coho salmon were most abundant in alcoves and beaver ponds. Because of the apparent strong preference for alcove and beaver pond habitat during winter and the rarity of that habitat in coastal streams, we concluded that if spawning escapement is adequate, the production of wild coho salmon smolts in most coho salmon spawning streams on the Oregon Coast is probably limited by the availability of adequate winter habitat.



1973 ◽  
Vol 30 (8) ◽  
pp. 1240-1242 ◽  
Author(s):  
Richard S. LeGore ◽  
David M. DesVoigne

Threespine sticklebacks (Gasterosteus aculeatus) and coho salmon fry (Oncorhynchus kisutch) were challenged in static 96-hr bioassays with suspensions of sediment from the Duwamish Waterway, Seattle, Wash. Doses of up to 5% wet weight (28.8 g/liter dry weight basis) were used. No observable effect on the fish of contaminants released from the sediment was elicited, although high levels of these contaminants, such as volatile solids, COD, organic nitrogen, oil and grease, zinc, and lead, were present.



1984 ◽  
Vol 41 (7) ◽  
pp. 1097-1105 ◽  
Author(s):  
J. C. Scrivener ◽  
B. C. Andersen

Natural patterns in emergence times, seaward movements, instream distributions, densities, and growth of coho salmon fry (Oncorhynchus kisutch) between March and September are contrasted with patterns observed during and after logging in the Carnation Creek watershed. After streamside logging in 1976–77, fry emerged up to 6 wk earlier and moved seaward more quickly than during years before logging. These observations are attributed to higher water temperatures during the winter and to emergence during a period of more frequent freshets. Increased fry movement from the stream could result in habitat being underutilized. In sections affected by intense streamside logging, the deposition of "fine" logging debris led to increased fry densities during the summers of 1977 and 1978. After major freshets in November 1978, which removed this fine debris and affected channel morphology in these sections, fry densities declined below those observed prior to logging. Growth rate of fry was inversely correlated with density in all stream sections. Growth rates, after correction for density, tended to be greater in all sections after the adjacent streamside was logged. Larger fry and more variable numbers of fry remained in the stream in September after logging than before logging. Their increased size is attributed to the longer growing season afforded by earlier emergence. This complex of interacting factors determines the number and size of fry in autumn and it can influence the production of smolts the following spring.



1992 ◽  
Vol 49 (3) ◽  
pp. 540-551 ◽  
Author(s):  
Robert E. Bilby ◽  
Peter A. Bisson

Annual organic matter inputs and production of stocked coho salmon (Oncorhynchus kisutch), coastal cutthroat trout (O. clarki clarki), and shorthead sculpin (Cottus confusus) from spring through early autumn were monitored for 2 yr in two headwater tributaries of the Deschutes River, Washington. One site was bordered by old-growth coniferous forest; the other was an area clear-cut without buffer strips 7 yr before the study. Allochthonous organic matter (terrestrial origin) dominated inputs to the old-growth site and contributed ~300 g∙m−2∙yr−1, while autochthonous organic matter totaled ~100 g∙m−2∙yr−1. In the clear-cut site, autochthonous inputs contributed ~175 g∙m−2∙yr−1, but allochthonous inputs contributed only ~60 g∙m−2∙yr−1 owing to loss of riparian vegetation. Although combined allochthonous and autochthonous inputs were almost twofold greater in the old-growth site, fish production was greater in the clear-cut site. Production of coho salmon and shorthead sculpin during early summer was largely responsible for differences between sites. Fish populations appeared to depend upon food derived from autotrophic pathways during spring and summer in the presence or absence of forest canopy, a hypothesis supported by analysis of coho stomach contents and the similar ratios of autochthonous inputs and fish production between the two streams.



Sign in / Sign up

Export Citation Format

Share Document