streamflow change
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2534
Author(s):  
Zhiyuan Yang ◽  
Jian Song ◽  
Chong Jiang ◽  
Kao Wang ◽  
Lingling Zhao ◽  
...  

A better understanding of how streamflow interacts with climate change and human activities would contribute to the efficiency and effectiveness of water resources management. Specifically, quantifying the climate and human contributions has widely been used when attributing streamflow changes. However, only a few previous studies compared the results derived by different methods that are currently available, and even fewer studies have ever had a close look at the uncertainties induced by various estimations of evapotranspiration. This research first examined the streamflow changes for 12 catchments on the Loess Plateau in China during the period of 1961–2018 with Mann–Kendall test and relevant statistical measurements. Then, 8 Budyko-based climate elasticity methods, each with 13 estimations of evapotranspiration, were used to quantifying human and climate contributions to streamflow change in the study area (i.e., 104 pairs of values for human and climate contributions for one catchment). The results showed that significant declining trends could be found in 11 of the 12 catchments studied. In terms of contribution rates, human activity has been shown as the major contributor to the streamflow decrease (60–90%) compared to climate change (10–50%). By comparing the contribution results derived by possible combinations of attribution method and evapotranspiration estimation, the variability due to different Budyko-based methods being used seems to be related to geographical location and climate. Although the spatial pattern of variability due to different estimations of evapotranspiration is not obvious, it is necessary to consider the uncertainties induced when launching contribution analysis over specific regions.


2021 ◽  
Author(s):  
Sara A. Goeking ◽  
David G. Tarboton

<p>Forested watersheds across the western US have experienced recent widespread disturbance and tree mortality due to a combination of heat, drought, and epidemic insect and disease outbreaks. Hydrologic response has included both increases and decreases in the fraction of annual precipitation that is partitioned to streamflow versus evapotranspiration (ET). We used a large-sample hydrology approach to address two questions: First, how have water budget components changed during this period of high forest disturbance, and second, does streamflow response vary with disturbance severity, incoming solar radiation, and/or aridity? From previous studies, streamflow and runoff ratio are expected to increase with forest disturbance due to reduced ET, and conversely increases in forest density are expected to reduce streamflow. We statistically evaluated whether these expectations were met, and where and why contradictory responses occurred, using trend and regression analysis. We constructed annual water budgets for 211 watersheds in the western US from daily observations in the CAMELS dataset, which includes streamflow and climate data as well as watershed characteristics such as mean incoming solar radiation and aridity (i.e., ratio of mean annual potential ET to mean annual precipitation, or PET/P). Forest disturbance was quantified as percentage change in live tree volume and mean annual rate of tree mortality, using data collected by the US Forest Service’s Forest Inventory and Analysis program. While most water budget components and forcing variables did not exhibit consistent trends, many watersheds experienced significant increases in temperature and PET. Unexpected trends in runoff ratio occurred in two scenarios: First, runoff ratio decreased following forest disturbance in many water-limited watersheds (i.e., PET/P>1) of the southwestern US; and second, both runoff ratios and forest densities increased in some energy-limited watersheds of the Pacific Northwest. Water-limited watersheds and those with high solar radiation experienced more forest disturbance than energy-limited watersheds. We used hydrologic time trend analysis to quantify the magnitude of streamflow change. A linear regression model including precipitation and temperature as inputs was calibrated and validated using the pre-disturbance time period (1980-2006, odd years and even years, respectively; r<sup>2</sup><sub>val</sub>=0.954), and then applied to the post-disturbance time period (2007-2019), where model residuals are assumed to represent change in streamflow due to factors not included in the model, i.e., forest change. Among the 65 watersheds with significant streamflow change, the magnitude of change was moderately correlated with both disturbance severity and solar radiation. Decreased post-disturbance streamflow occurred mainly in watersheds with low to moderate tree mortality and high incoming solar radiation. We used multiple linear regression to identify important predictors of streamflow change. Pre-disturbance streamflow, change in precipitation and PET, solar radiation, and the interaction of solar radiation and tree mortality were all highly significant predictors (p</p>


2021 ◽  
Author(s):  
Xizhi Lv ◽  
Shaopeng Li ◽  
Yongxin Ni ◽  
Qiufen Zhang ◽  
Li Ma

<p>In the past 60 years, climate changes and underlying surface of the watershed have affected the structure and characteristics of water resources to a different degree It is of great significance to investigate main drivers of streamflow change for development, utilization and planning management of water resources in river basins. In this study, the Huangshui Basin, a typical tributary of the upper Yellow River, is used as the research area. Based on the Budyko hypothesis, streamflow and meteorological data from 1958-2017 are used to quantitatively assess the relative contributions of changes in climate and watershed characteristic to streamflow change in research area. The results show that: the streamflow of Huangshui Basin shows an insignificant decreasing trend; the sensitivity coefficients of streamflow to precipitation, potential evapotranspiration and watershed characteristic parameter are 0.5502, -0.1055, and 183.2007, respectively. That is, an increase in precipitation by 1 unit will induce an increase of 0.5502 units in streamflow, and an increase in potential evapotranspiration by 1 unit will induce a decrease of 0.1055 units in streamflow, and an increase in the watershed characteristic parameter by 1 unit will induce a decrease of 183.2007 units in streamflow. Compared with the reference period (1958-1993), the streamflow decreased by 20.48mm (13.59%) during the change period (1994-2017), which can be attribution to watershed characteristic changes (accounting for 73.64%) and climate change (accounting for 24.48%). Watershed characteristic changes exert a dominant influence upon the reduction of streamflow in the Huangshui Basin.</p>


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2465
Author(s):  
Jyun Tsao ◽  
Cheng-Haw Lee ◽  
Hsin-Fu Yeh

Climate change and anthropogenic activity are the main factors impacting the hydrological environment. For sustainable water utilization, identifying the impact contribution of these two factors on the streamflow variations is an important topic in recent research. In this study, seven river basins in southern Taiwan were selected as the study area to evaluate the annual streamflow from 1980 to 2017. The decomposition and elasticity methods based on the Budyko hypothesis were applied to quantify the contribution of climate and anthropogenic factors to the streamflow variations. In addition, the normalized difference vegetation index (NDVI) was used to represent the actual situation of land cover and verify the parameters in the Budyko equation. The two quantitative methods consistently demonstrated that the streamflow variations from pre- to post-period occurred due to the climate factor. The elasticity coefficient of variables demonstrated that the streamflow change is more sensitive to precipitation and this influence reduces from pre- to post-period as the streamflow increase. In the NDVI variations, except for the Yanshui and the Linbain rivers, the Budyko equation parameters changed consistently with NDVI. The present study provides effective results on the contribution of streamflow variations in southern Taiwan to serve as a reference for future water management.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1198 ◽  
Author(s):  
Zhe Liu ◽  
Lan Cuo ◽  
Qijiang Li ◽  
Xisheng Liu ◽  
Xuelian Ma ◽  
...  

Climate change (CC) and land use/cover change (LUCC) are the main drivers of streamflow change. In this study, the effects of CC and LUCC on streamflow regime as well as their spatial variability were examined by using the Distributed Hydrology Soil Vegetation Model (DHSVM) for the Beichuan River Basin in the northeast Tibetan Plateau. The results showed that CC increased annual and maximum streamflow in the upstream but decreased them in the downstream. CC also enhanced minimum streamflow in the whole river basin and advanced the occurrence of daily minimum streamflow. Temperature change exerted greater influence on streamflow regime than wind speed change did in most situations, but the impact of wind speed on streamflow reflected the characteristics of accumulative effects, which may require more attention in future, especially in large river basins. As for LUCC, cropland expansion and reservoir operation were the primary reasons for streamflow reduction. Cropland expansion contributed more to annual mean streamflow change, whereas reservoir operation greatly altered monthly streamflow pattern and extreme streamflow. Reservoir regulation also postponed the timing of minimum streamflow and extended durations of average, high, and low streamflow. Spatially, CC and LUCC played predominant roles in the upstream and the downstream, respectively.


2020 ◽  
Vol 12 (5) ◽  
pp. 1981
Author(s):  
Hsin-Fu Yeh ◽  
Jyun Tsao

Global climate change and rapid industrial development have led to changes in streamflow worldwide, and determining the relative contributions from climate variability and human activity is important for water management. However, studies using attribution analysis to investigate the streamflow in Taiwan are scarce. In this study, statistical methods are used to evaluate the changes in streamflow in order to assess the variation in the hydrological environment of Taiwan. Four river basins in Southern Taiwan were selected as the study area. The impact of climate variability and human activities on the changes in the streamflow from 1980 to 2017 was quantified via the hydrological sensitivity-based method and the decomposition method, which is based on the Budyko hypothesis. The results from these two methods were consistent and demonstrated that the increase in the streamflow of the four river basins was mainly attributable to climate variability. Streamflow change was more responsive to precipitation because of the relatively larger value of the sensitivity coefficients. This study provides a basic insight into the hydrological dynamics of river basins in Southern Taiwan and may serve as a reference for related research in the future.


2019 ◽  
Vol 64 (27) ◽  
pp. 2807-2821 ◽  
Author(s):  
Fengge Su ◽  
Yongqiang Zhang ◽  
Qiuhong Tang ◽  
Jin Ding ◽  
Li He ◽  
...  

2018 ◽  
Vol 23 (12) ◽  
pp. 05018024 ◽  
Author(s):  
Xiaorong Lu ◽  
Yanhua Zhuang ◽  
Xuelei Wang ◽  
Qing Yang

Sign in / Sign up

Export Citation Format

Share Document