Relative Contributions of Dietary and Waterborne Zinc in the Rainbow Trout, Salmo gairdneri

1988 ◽  
Vol 45 (1) ◽  
pp. 32-41 ◽  
Author(s):  
D. J. Spry ◽  
P. V. Hodson ◽  
C. M. Wood

Rainbow trout, Salmo gairdneri, were fed purified diets with zinc concentrations ranging from deficient to excessive (1, 90, 590 μg Zn∙g−1) and simultaneously exposed to a range of waterborne [Zn] (7, 39, 148, 529 μg Zn∙L−1). After 1 wk, fish fed the deficient diet, at ambient waterborne [Zn], had low plasma [Zn] which decreased further during the 16-wk experiment. Growth ceased after 12 wk; hematocrit and plasma protein were depressed. Both whole body [Zn] and body burden decreased by 16 wk, but most other elements were elevated. Increasing waterborne [Zn] alone increased plasma [Zn], whole body [Zn], and growth in a graded manner and normalized hematocrit, plasma protein, and other whole body elements. Increasing dietary [Zn] to 90 μg Zn∙g−1 at ambient waterborne [Zn] prevented depression of plasma [Zn] and permitted normal growth and whole body [Zn]. Zinc uptake from water, probably across the gills, was independent of uptake from the diet since at any dietary [Zn], increasing the waterborne [Zn] resulted in increased whole body [Zn]. Even when dietary [Zn] was adequate, the waterborne contribution was as high as 57%, and 100% when the dietary [Zn] was deficient. There were no toxic effects on any of the variables measured.


1984 ◽  
Vol 41 (11) ◽  
pp. 1592-1600 ◽  
Author(s):  
Karl D. Shearer

By examining a group of rainbow trout (Salmo gairdneri) over their life cycle (ova to 1500 g), 1 found that their elemental composition was determined by fish size, stage of life cycle (prefeeding, juvenile, post-juvenile), and reproductive state. Fish were fed practical diets and were reared under hatchery conditions. Whole body elemental concentrations of Ca, Cu, Fe, K, Mg, Mn, Na, P, Sr, and Zn were size dependent prior to sexual maturity. Rates of elemental accumulation in relation to weight gain were higher in juveniles than in adult fish. Reduced somatic concentrations of Mn, Fe, and Zn were observed during gonad maturation in female but not in male trout. Tissue concentrations of some elements remained constant over the duration of the study, while others increased or decreased linearly with increasing fish size. Tables and equations 1 present will enable the normal tissue and whole body elemental composition of rainbow trout at any size to be determined. My results indicate that body burden or wet weight concentration are better indicators of elemental status than dry weight concentration and that comparison of elemental levels between treatment groups in dietary experiments should be made on the basis of a standard-sized fish or by comparing the rates of elemental deposition with growth.



1985 ◽  
Vol 42 (1) ◽  
pp. 181-184 ◽  
Author(s):  
Ronald W. Hardy ◽  
Karl D. Shearer

Groups of rainbow trout (Salmo gairdneri) were fed casein–gelatin diets supplemented with calcium phosphate (Ca3(PO4)2) to produce dietary calcium and phosphorus levels of 1,2, or 4% and 0.9,1.5, or 2.4%, respectively (low, medium, or high calcium phosphate), and supplemented with 20 μg Zn/g diet as ZnSO4, zinc proteinate, or ZnSO4 + EDTA (1000 μg/g). Dietary calcium phosphate levels had no significant effect on weight gain of the fish, although the fish fed the high dietary calcium phosphate level were smaller than the rest. Dietary zinc supplementation had no effect on growth, but significantly increased whole body zinc levels in fish fed diets containing low or medium calcium phosphate. In fish fed diets containing low calcium phosphate, the zinc supplements all increased whole body zinc concentrations. In fish fed diets containing medium calcium phosphate, supplementation with zinc proteinate resulted in higher whole body zinc values than supplementation with other zinc sources. Dietary zinc supplementation did not increase whole body zinc concentrations above control levels in fish fed the experimental diets containing high calcium phosphate. We conclude that increased dietary levels of calcium phosphate reduced whole body zinc concentration of rainbow trout and that 20 μg Zn/g diet was insufficient to overcome this reduction at the highest dietary calcium phosphate level regardless of the form of zinc supplement used.



1988 ◽  
Vol 45 (6) ◽  
pp. 1045-1053 ◽  
Author(s):  
Michael A. Giles

Adult rainbow trout, Salmo gairdneri, were exposed to 3.6 and 6.4 μg Cd/L for 178 d. Cadmium accumulated most rapidly in gill tissue which became saturated at levels 100-fold higher than controls within 24 and 52 d in the high- and low-metal exposures, respectively. Liver cadmium increased 250- to 400-fold over the test period but accumulation exhibited a plateau between 52 and 129 d followed by a rapid rise by 178 d. Kidney cadmium increased consistently throughout the test period to levels approximately 50- to 100-fold higher than control values. Cadmium in the gut and skin increased 10- and 5-fold, respectively, while no increase was recorded in white muscle. A maximum of 2.1% of the cadmium available in a commercial diet (0.2 μg Cd/g dry food} was accumulated in control fish. Although cadmium was not detected in the urine, urinary zinc excretion was elevated in trout exposed to 6.4 μg Cd/L such that 7 mol of zinc was excreted per 1 mol of cadmium accumulated during the initial 24 d of exposure. The whole-body burden of cadmium increased linearly with time in both treatments with a time constant of 0.366 and 0.554%/d for trout exposed to 3.6 and 6.4 μg Cd/L, respectively.



1989 ◽  
Vol 147 (1) ◽  
pp. 147-168 ◽  
Author(s):  
STEVE F. PERRY ◽  
PIERRE LAURENT

1. Whole-body ionic fluxes and gill chloride cell (CC) morphology were monitored in rainbow trout (Salmo gairdneri) exposed acutely or chronically to natural fresh water (NFW; [Na+]=0.120 mmoll−1; [Cr]=0.164 mmoll−1) or artificially prepared fresh water with reduced [NaCl] (AFW; [Na+]=0.017 mmoll−1; [CT]=0.014 mmoll−1). 2. Net fluxes of Na+ (JnetNa) and Cl− (JnetCl) became extremely negative (indicating net NaCl loss to the environment) upon immediate exposure to AFW exclusively as a result of reduced NaCl influx (JinNa and JinNa). JnetNa and JnetCl were gradually restored to control rates during prolonged (30 days) exposure to AFW. 3. The restoration of JnetCl in AFW was due both to increased JinCl and to reduced Cl− efflux (JoutCl) whereas the primary response contributing to the restoration of JnetNa a t was an increase of JNain. 4. The total apical surface area of branchial CCs exposed to the external environment increased markedly after 24 h in AFW and remained elevated for 1 month as a consequence of enlargement of individual CCs and, to a lesser extent, increased CC density. JinNa and JinNa were correlated significantly with total CC apical surface area. 5. Plasma cortisol levels rose transiently in fish exposed to AFW. Treatment of NFW-adapted fish with cortisol for 10 days (a protocol known to cause CC proliferation) caused pronounced increases in JinCl and JinNa, as measured in both NFW and AFW. 6. These results suggest that an important adaptational response of rainbow trout to low environmental [NaCl] is cortisol-mediated enlargement of branchial epithelial CCs which, in turn, enhances the NaCl-transporting capacity of the gill as a result of the proliferation of Na+ and Cl− transport sites.



1987 ◽  
Vol 44 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Darrel Jon Laurén ◽  
D. G. McDonald

Whole body, gill, and liver copper uptake, gill Na+-K+-ATPase specific activity, and gill and liver acid-soluble thiols (AST), glutathione, and cysteine of rainbow trout (Salmo gairdneri) were measured during 28 d of exposure to 55 μg copper∙L−1. Na+-K+-ATPase specific activity was inhibited by 33% within 24 h of copper exposure, but this was compensated by a significant increase in microsomal protein so that the total Na+-K+-ATPase activity per milligram of gill tissue returned to normal by day 14. There was no accumulation of copper and no increase in AST, glutathione, or cysteine in the gill. However, after 7 d of exposure, hepatic AST and glutathione had increased by about 2 times, and a sulfhydryl-rich, acid-soluble protein, tentatively identified as metallothionein, increased by 2.8 times. Copper accumulation was highest in the liver, but other tissues also accumulated copper.



1985 ◽  
Vol 53 (1) ◽  
pp. 149-157 ◽  
Author(s):  
J. G. Bell ◽  
C. B. Cowey ◽  
J. W. Adron ◽  
Aileen M. Shanks

1. Duplicate groups of rainbow trout (Salrno gairdnert) (mean weight 11 g) were given for 40 weeks one of four partially purified diets that were either adequate or low in selenium or vitamin E or both.2. Weight gains of trout given the dually deficient diet were significantly lower than those of trout given a complete diet or a diet deficient in Se. No mortalities occurred and the only pathology seen was exudative diathesis in the dually deficient trout.3. There was significant interaction between the two nutrients both with respect to packed cell volume and to malondialdehyde formation in the in vitro NADPH-dependent microsomal lipid peroxidation system.4. Tissue levels of vitamin E and Se decreased to very low levels in trout given diets lacking these nutrients. For plasma there was a significant effect of dietary vitamin E on Se concentration.5. Glutathione (GSH) peroxidase (EC 1. 1 1. 1.9) activity in liver and plasma was significantly lower in trout receiving low dietary Se but was independent of vitamin E intake. The ratios of hepatic GSH peroxidase activity measured with cumene hydroperoxide and hydrogen peroxide were the same for all treatments. This confirms the absence of a Se-independent GSH peroxidase activity in trout liver.6. Se deficiency did not lead to any compensatory increase in hepatic GSH transferase (EC 2. 5. 1. 18) activity; values were essentially the same in all treatments.7. Plasma pyruvate kinase (EC 2. 7. 1.40) activity increased significantly in the trout deficient in both nutrients. This was thought to be due to leakage of the enzyme from the muscle and may be indicative of incipient (subclinical) muscle damage.



1974 ◽  
Vol 31 (12) ◽  
pp. 1893-1898 ◽  
Author(s):  
Charlie E. Smith ◽  
Myron Brin ◽  
John E. Halver

Rainbow trout (Salmo gairdneri) fed a pyridoxine-deficient diet developed clinical signs of the deficiency after 8 wk of feeding. Erythrocyte and muscle glutamic pyruvic transaminase (GPT) concentrations were significantly depressed in deficient fish, while liver GPT was significantly elevated. Liver GPT was also elevated in starved trout suggesting the increase in enzyme concentrations was secondary to the deficiency. A normocyte, normochromic anemia, which responded favorably to pyridoxine, developed in pyridoxine-deficient trout. Microscopic lesions were found in gastrointestinal tract, kidney, liver, pancreas, and thymus of deficient fish.



1986 ◽  
Vol 56 (2) ◽  
pp. 421-428 ◽  
Author(s):  
J. G. Bell ◽  
J. W. Adron ◽  
C. B. Cowey

1. Duplicate groups of rainbow trout (Salmo gairdneri) were each given partially purified diets which were either adequate or depleted in selenium for 40 weeks.2. Although there was no significant difference in weight gain, liver Se concentration was significantly lower in fish given the deficient diet.3. Glutathione (GSH) peroxidase (EC 1. 11. 1. 9) activity was significantly reduced in liver of Se-deficient fish but a differential assay did not indicate the presence of a non-Se-dependent GSH peroxidase activity, although liver GSH S-transferase (EC 2. 5. 1. 18) was significantly increased.4. Perfusion of livers from trout given Se-adequate diets with t-butyl hydroperoxide (BuOOH) or hydrogen peroxide caused an increase in the rate of release of glutathione disulphide (GSSG) into the perfusate.5. Perfusion of livers from Se-deficient trout with BuOOH or H2O2 did not result in any change in rate of release of GSSG into the perfusate.6. These findings confirm the absence of any compensatory non-Se-dependent peroxidase activity in Se-depleted trout.



1989 ◽  
Vol 257 (2) ◽  
pp. 555-559 ◽  
Author(s):  
P E Olsson ◽  
M Zafarullah ◽  
L Gedamu

The regulation of metallothionein (MT) biosynthesis in rainbow-trout liver was studied after a single intraperitoneal injection of oestradiol-17 beta. Sampling was performed after 2, 7, 14, 21, 28 and 35 days. Following induction of vitellogenin synthesis in the liver, liver somatic index (LSI) rose from 1.25 to 2.00 in 14 days. Associated with the increase in LSI was an elevation of hepatic vitellogenin mRNA and zinc concentrations. The vitellogenin mRNA concentrations peaked at 7 days after treatment. The zinc concentrations increased to a peak at day 14. MT was analysed by using differential pulse polarography and a rainbow-trout MT RNA probe. The MT mRNA concentrations rose after 14 days and remained elevated at 21 and 28 days. The MT concentrations increased after 14 days and remained elevated throughout the experimental period. The concentrations of MT-bound zinc increased in association with the elevation in MT concentrations in the oestradiol-treated rainbow trout. These findings indicate that MT is involved in the regulation of zinc during the period of vitellogenin induction and that MT may function by maintaining the pool of available zinc at an appropriate concentration.



1978 ◽  
Vol 35 (11) ◽  
pp. 1485-1488 ◽  
Author(s):  
G. R. Bouck ◽  
M. A. Cairns ◽  
A. R. Christian

Four capture methods were used to collect domesticated rainbow trout (Salmo gairdneri): angling, electroshocking, seining, and direct netting (control). Blood was sampled rapidly upon capture, usually within 2 min. No significant differences were noted within the time frame of the experiment between the four capture groups for plasma protein concentration, lactate dehydrogenase activity, or leucine aminonaphthylamidase activity. Creatine phosphokinase activity was elevated among electroshocked fish. Acid phosphatase activity was too low for accurate measurement. Hematocrits were significantly elevated by capture struggles. These results indicate that these capture methods do not preclude the use of plasma enzyme levels for investigating the health of wild fish. Key words: plasma enzyme, capture stress, physiology, plasma protein, rainbow trout, lactate dehydrogenase, leucine aminonaphthylamidase, creatine phosphokinase



Sign in / Sign up

Export Citation Format

Share Document