Estimating season-wide survival rates of outmigrating salmon smolt in the Snake River, Washington

1998 ◽  
Vol 55 (3) ◽  
pp. 761-769 ◽  
Author(s):  
John R Skalski

Standard release-recapture models can provide release-specific estimates of survival probabilities for a group of salmonid smolt released at a particular time and place in the river. However, reliable estimates of season-wide survival for the population of outmigrating smolt are needed in the Snake-Columbia River Basin for careful management of the resource. Alternative estimators are presented to estimate season-wide survival of spring chinook salmon (Oncorhynchus tshawytscha) smolt. Using daily fish tagging, survival for the middle 95% of the migration was estimated to be SS = 0.873 (SE = 0.005) from the tailrace of Lower Granite Dam (RK 695) to the tailrace of Little Goose Dam (RK 635) in 1995. Daily survival estimates were remarkably stable across the migration season with some evidence of decreased survival towards the very end of the migration. Sample size calculations suggest good precision can be attained (i.e., projected SE = 0.01) with tag releases as small as n = 500 fish per day (d = 7) across the outmigration. Less than daily sampling can result in season-wide survival estimates that are too imprecise for many management purposes.


1997 ◽  
Vol 54 (6) ◽  
pp. 1246-1254 ◽  
Author(s):  
M J Unwin

Fry-to-adult survival rates for chinook salmon (Oncorhynchus tshawytscha) from Glenariffe Stream, a tributary of the Rakaia River, New Zealand, were estimated for fish of both natural and hatchery origin. Survival of naturally produced fry, most of which leave Glenariffe Stream within 24 h of emergence, averaged 0.079% (range 0.013-1.17%). For hatchery fish released at 8-12 months, standardised to a mean weight of 38 g, survival covaried with weight at release consistently across all brood years and averaged 0.34% (range 0.008-3.28%). Survival rates for hatchery fish were four times higher than for naturally produced fry, but were extremely poor relative to their size at release. Survival rates for fish of natural and hatchery origin were positively correlated, suggesting that recruitment of both stocks is primarily controlled by common influences within the marine environment, probably during the first winter at sea. Stock-recruitment analysis for the natural population showed little tendency for recruitment to increase with stock size, suggesting that marine survival rates may be density dependent. Although the reasons for the relatively poor survival of hatchery fish are unclear, the results provide a case study in which hatchery fish appear to have a poorer ``fitness to survive'' than their natural counterparts.



2014 ◽  
Vol 71 (7) ◽  
pp. 1671-1682 ◽  
Author(s):  
D. Patrick Kilduff ◽  
Louis W. Botsford ◽  
Steven L. H. Teo

Abstract Knowledge of the spatial and temporal extent of covariation in survival during the critical ocean entry stage will improve our understanding of how changing ocean conditions influence salmon productivity and management. We used data from the Pacific coastwide coded-wire tagging program to investigate local and regional patterns of ocean survival of Chinook salmon (Oncorhynchus tshawytscha) from the Central Valley of California to southeastern Alaska from 1980–2006. Ocean survival of fish migrating as subyearlings covaried strongly from Vancouver Island to California. Short-term correlations between adjacent regions indicated this covariability increased, beginning in the early 1990s. Chinook salmon survivals exhibited a larger spatial scale of variability (50% correlation scale: 706 km) than those reported for other northeast Pacific Ocean salmon. This scale is similar to that of environmental variables related to ecosystem productivity, such as summer upwelling (50% correlation scale: 746 km) and sea surface temperature (50% correlation scale: 500–600 km). Chinook salmon ocean survival rates from southeastern Alaska and south of Vancouver Island were not inversely correlated, in contrast to earlier observations based on catch data, but note that our data differ in temporal and spatial coverage from those studies. The increased covariability in Chinook salmon ocean survival suggests that the marine phase contributes little to the reduction in risk across populations attributable to the portfolio effect. In addition, survival of fish migrating as yearlings from the Columbia River covaried with Chinook salmon survival from the northernmost regions, consistent with our understanding of their migration patterns.



1999 ◽  
Vol 56 (6) ◽  
pp. 1031-1045 ◽  
Author(s):  
Howard A Schaller ◽  
Charles E Petrosky ◽  
Olaf P Langness

The effects of increasing hydropower development and operation appear extremely important in the decline and near extripation of stream-type chinook salmon (Oncorhynchus tshawytscha) stocks of the upper Columbia and Snake rivers. We evaluated temporal and spatial patterns of productivity and survival rates (for index stocks from the Snake, upper Columbia, and lower Columbia regions) to determine the cause of dramatic declines of the upriver stocks. This evaluation tested hypotheses about nonstationarity (changes over time in average productivity) in the Ricker recruitment function caused by changes in the physical environment. Individual stocks showed recent declines in indicators of productivity and survival rate; however, the comparisons indicate that upriver stocks showed greater declines coincident with the development and operation of the hydropower system. Evidence from the aggregate run indicates that declines over the last 50 years were quite abrupt and corresponded to construction and completion of the hydropower system.



2013 ◽  
Vol 70 (3) ◽  
pp. 502-512 ◽  
Author(s):  
Andre E. Kohler ◽  
Paul C. Kusnierz ◽  
Timothy Copeland ◽  
David A. Venditti ◽  
Lytle Denny ◽  
...  

Salmon provide an important resource subsidy and linkage between marine and land-based ecosystems. This flow of energy and nutrients is not unidirectional (i.e., upstream only); in addition to passive nutrient export via stream flow, juvenile emigrants actively export nutrients from freshwater environments. In some cases, nutrient export can exceed import. We evaluated nutrient fluxes in streams across central Idaho, USA, using Chinook salmon (Oncorhynchus tshawytscha) adult escapement and juvenile production data from 1998 to 2008. We found in the majority of stream-years evaluated, adults imported more nutrients than progeny exported; however, in 3% of the years, juveniles exported more nutrients than their parents imported. On average, juvenile emigrants exported 22% ± 3% of the nitrogen and 30% ± 4% of the phosphorus their parents imported. This relationship was density-dependent and nonlinear; during periods of low adult abundance, juveniles were larger and exported up to 194% and 268% of parental nitrogen and phosphorus inputs, respectively. We highlight minimum escapement thresholds that appear to (i) maintain consistently positive net nutrient flux and (ii) reduce the average proportional rate of export across study streams. Our results suggest a state shift occurs when adult spawner abundance falls below a threshold to a point where the probability of juvenile nutrient exports exceeding adult imports becomes increasingly likely.



PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0190059 ◽  
Author(s):  
Bobbi M. Johnson ◽  
Brian M. Kemp ◽  
Gary H. Thorgaard


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 701
Author(s):  
Daniel G. Hernandez ◽  
William Brown ◽  
Kerry A. Naish ◽  
Gael Kurath

Infectious Hematopoietic Necrosis Virus (IHNV) infects juvenile salmonid fish in conservation hatcheries and aquaculture facilities, and in some cases, causes lethal disease. This study assesses intra-specific variation in the IHNV susceptibility of Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin (CRB), in the northwestern United States. The virulence and infectivity of IHNV strains from three divergent virus genogroups are measured in four Chinook salmon populations, including spring-run and fall-run fish from the lower or upper regions of the CRB. Following controlled laboratory exposures, our results show that the positive control L strain had significantly higher virulence, and the UC and MD strains that predominate in the CRB had equivalently low virulence, consistent with field observations. By several experimental measures, there was little variation in host susceptibility to infection or disease. However, a small number of exceptions suggested that the lower CRB spring-run Chinook salmon population may be less susceptible than other populations tested. The UC and MD viruses did not differ in infectivity, indicating that the observed asymmetric field prevalence in which IHNV detected in CRB Chinook salmon is 83% UC and 17% MD is not due to the UC virus being more infectious. Overall, we report little intra-species variation in CRB Chinook salmon susceptibility to UC or MD IHNV infection or disease, and suggest that other factors may instead influence the ecology of IHNV in the CRB.



1977 ◽  
Vol 34 (7) ◽  
pp. 933-936 ◽  
Author(s):  
J. L. Zinn ◽  
K. A. Johnson ◽  
J. E. Sanders ◽  
J. L. Fryer

Nine salmonid species and nine hatchery strains of chinook salmon (Oncorhynchus tshawytscha) were examined for susceptibility to infection by Ceratomyxa shasta. All salmonid species tested were susceptible to infection by this myxosporidan, although no deaths occurred in the Atlantic salmon (Salmo salar). The level of resistance varied widely among the different species. A low prevalence of ceratomyxosis occurred in hatchery strains of chinook salmon from the Columbia River basin, while those chinook strains derived from outside this drainage system were highly susceptible to the parasite. Key words: Oncorhynchus tshawytscha, salmonidae, ceratomyxosis, Ceratomyxa shasta, resistance, susceptibility



Sign in / Sign up

Export Citation Format

Share Document