Periphyton biomass and community composition in rivers of different nutrient status

1999 ◽  
Vol 56 (4) ◽  
pp. 560-569 ◽  
Author(s):  
J Chételat ◽  
F R Pick ◽  
A Morin ◽  
P B Hamilton

Epilithic periphyton was investigated in riffle zones of 13 rivers in southern Ontario and western Quebec to describe how algal biomass and community composition vary with nutrient concentration and water velocity during summer. Algal biomass (milligrams chlorophyll a (Chl a) per square metre) was strongly correlated with total phosphorus concentration (r2 = 0.56, p < 0.001) and conductivity (r2 = 0.71, p < 0.001) of the overlying water but unrelated to water velocity over the range of 10-107 cm·s-1. Differences in periphyton Chl a were associated with changes in biomass of Chlorophyta (r2 = 0.51, p = 0.001) and Bacillariophyta (r2 = 0.64, p < 0.001) and were not related to Rhodophyta and Cyanophyta biomass (p > 0.10). The relative proportions of taxonomic divisions varied with total standing stock. Percent Chlorophyta biomass increased with periphyton Chl a and was the largest fraction at moderately eutrophic sites. Rhodophyta contributed the most biomass at sites with the lowest Chl a. Cladophora, Melosira, and Audouinella biomasses were positively correlated with total phosphorus concentration over the range of 6-82 µg·L-1 (r2 = 0.39-0.64, p < 0.005), and these genera were dominant at sites with the highest nutrient concentrations.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Chaoguang Gu ◽  
Feifei Li ◽  
Jibo Xiao ◽  
Shuyi Chu ◽  
Shuang Song ◽  
...  

Abstract The vegetative growth and remediation potential of Rotala rotundifolia, a novel submerged aquatic plant, for eutrophic waters were investigated on different sediments, and under a range of nitrogen concentrations. Rotala Rotundifolia grew better on silt than on sand and gravel in terms of plant height, tiller number and biomass accumulation. Percent increment of biomass was enhanced at low water nitrogen (ammonium nitrogen concentration ≤10 mg/L). The maximum total nitrogen and total phosphorus removals in the overlying water were between 54% to 66% and 42% to 57%, respectively. Nitrogen contents in the sediments increased with increasing water nitrogen levels, whereas, nitrogen contents in the plant tissues showed no apparent regularity, and the greatest value was obtained at ammonium nitrogen concentration 15 mg/L. Both phosphorus contents in the sediments and tissues of plants were not affected significantly by additional nitrogen supply. Direct nitrogen uptake by plants was in the range of 16% to 39% when total phosphorus concentration was 1.0 mg/L. These results suggested that Rotala Rotundifolia can be used to effectively remove nitrogen and phosphorus in eutrophic waters.


1995 ◽  
Vol 52 (6) ◽  
pp. 1202-1209 ◽  
Author(s):  
Ruth E. Holland ◽  
Thomas H. Johengen ◽  
Alfred M. Beeton

Concentrations of soluble reactive phosphorus, ammonium-nitrogen, nitrate-nitrogen, silica, and chloride have all increased since the establishment of the zebra mussel (Dreissena polymorpha) in Hatchery Bay, western Lake Erie, in 1988. Total phosphorus concentrations have changed little. These results are from 188 samples collected weekly and year round before the establishment of Dreissena (1984–1987) and 192 samples post-Dreissena (1990–1993). The mean annual total phosphorus concentration for the three complete post-Dreissena years was 35 μg∙L−1 strikingly similar to the concentration of 36 μg∙L−1, which in 1959 helped to define the waters of Lake Erie as eutrophic. The relative steadiness in total phosphorus may reflect sediment reflux, because Hatchery Bay is a polymictic system. The slight increase in the biologically conservative ion, chloride, in the 1990s, is probably due to the increased precipitation and runoff in the western Lake Erie watershed. Decreased phytoplankton and associated increased water clarity caused by efficient filtering by D. polymorpha, have lessened symptoms of eutrophication and produced a situation where nutrients are not fully utilized, i.e., biological oligotrophy.


1992 ◽  
Vol 49 (5) ◽  
pp. 975-977 ◽  
Author(s):  
Robert L. France ◽  
Robert H. Peters

General relationships between means and variances can be used to determine requisite sample number for desired levels of precision but have not been developed for phosphorus, one of the best indicators of lake eutrophication. Data from 65 north-temperate lake-years are used to compare such relationships of temporal variance as functions of mean concentration for both total phosphorus (TP) and chlorophyll a (Chl a). We found TP to be less seasonally variable than Chl a, confirming several regional analyses and strengthening the established recommendations that variability in Chl a should dictate sampling program design.


1985 ◽  
Vol 42 (4) ◽  
pp. 831-835 ◽  
Author(s):  
E. T. Riley ◽  
E. E. Prepas

Data from the literature were used to calculate separate regressions of summer chlorophyll a concentration ([Chl a]) on spring total phosphorus concentration ([TP]) for lakes that remain thermally stratified during the summer and lakes that mix intermittently during the summer. Significant differences were found in the spring [TP] – summer [Chl a] relationships for the two lake types (P < 0.05). The mean ratios of summer [TP] to spring [TP] were also significantly different in stratified and mixed lakes (P < 0.001); this difference is the explanation offered for why the spring [TP] – summer [Chl a] relationships were different in stratified and mixed lakes.


1995 ◽  
Vol 52 (4) ◽  
pp. 804-815 ◽  
Author(s):  
B. K. Basu ◽  
F. R. Pick

Planktonic chlorophyll a (chl-a) concentrations in the Rideau River, Ontario showed longitudinal and seasonal variation and ranged from 2 to 19 μg∙L−1. Chlorophyll a concentrations in the river were not simply a reflection of the concentrations in the headwaters. On movement from the lentic headwaters into the lotic river waters there was usually a significant decrease in chl-a concentration. Downstream there were reaches of net increase in chl-a (sources), reaches of no change in concentration, and reaches of net decrease (sinks). Increases in concentration only occurred over reaches with retention times of 72 h or longer. No increases in chl-a concentration occurred over a reach with a retention time less than 50 h. Chlorophyll a concentration was not significantly correlated with discharge. Chlorophyll a concentration was positively related to total phosphorus concentration (R2 = 0.15, p = 0.016). About 50% of the variation in chl-a concentration could be accounted for by a combination of total phosphorus, nitrate, and soluble reactive phosphorus concentrations.


1992 ◽  
Vol 27 (2) ◽  
pp. 271-286 ◽  
Author(s):  
Sonia Paulino Mattos ◽  
Irene Guimarães Altafin ◽  
Hélio José de Freitas ◽  
Cristine Gobbato Brandão Cavalcanti ◽  
Vera Regina Estuqui Alves

Abstract Built in 1959, Lake Paranoá, in Brasilia, Brazil, has been undergoing an accelerated process of nutrient enrichment, due to inputs of inadequately treated raw sewage, generated by a population of 600,000 inhabitants. Consequently, it shows high nutrient content (40 µg/L of total phosphorus and 1800 µg/L of total nitrogen), low transparency (0.65 m) and high levels of chlorophyll a (65 µg/L), represented mainly by Cylindrospermopsis raciborskii and sporadic bloom of Microcystis aeruginosa, which is being combatted with copper sulphate. With the absence of seasonality and a vertical distribution which is not very evident, the horizontal pattern assumes great importance in this reservoir, in which five compartments stand out. Based on this segmentation and on the identification of the total phosphorus parameter as the limiting factor for algal growth, mathematical models were developed which demonstrate the need for advanced treatment of all the sewage produced in its drainage basin. With this, it is expected that a process of restoration will be initiated, with a decline in total phosphorus concentration to readings below 25 µg/L. Additional measures are proposed to accelerate this process.


2010 ◽  
Vol 67 (8) ◽  
pp. 1262-1273 ◽  
Author(s):  
Marc Richard Albert ◽  
Guangjie Chen ◽  
Graham K. MacDonald ◽  
Jesse C. Vermaire ◽  
Elena M. Bennett ◽  
...  

We conducted paleolimnological studies over spatial and temporal gradients to define the responses of subfossil cladoceran community composition and diversity to changes in land use and phosphorus concentrations in shallow lakes. We predicted that watershed disturbance by humans, through its impact on water quality, would explain significant variation in cladoceran diversity and composition. Across lakes, water-column total phosphorus concentration was a significant (p < 0.05) predictor of the subfossil cladoceran community composition. Chydorid diversity was also found to be related significantly to phosphorus concentration (r = –0.55, p < 0.05) and the proportion of disturbed land in the watershed (r = –0.47, p < 0.05). However, net load of phosphorus to the watershed rather than proportion of watershed disturbance was a significant predictor of chydorid diversity (r = –0.86, p < 0.001) in our temporal analysis of an eutrophying lake. Given that phosphorus loading to surface waters is often related to phosphorus concentrations in soils, we suggest that the net phosphorus load to the watershed is a more sensitive metric of land-use change and necessary for detecting ecological responses in time series data.


2001 ◽  
Vol 58 (2) ◽  
pp. 421-436 ◽  
Author(s):  
E E Prepas ◽  
B Pinel-Alloul ◽  
D Planas ◽  
G Méthot ◽  
S Paquet ◽  
...  

Eleven headwater lakes in Alberta's Boreal Plain were monitored for nutrients and plankton 2 years before and 2 years after variable watershed harvesting (harvesting mean 15%, range 0-35%). After harvesting, variations in annual precipitation resulted in lake water residence times that differed by an order of magnitude from one year to the next. During the first posttreatment year, total phosphorus concentrations increased (overall 40%) in most lakes; however, response was most consistent in lakes that were shallow and the water column mixed or weakly thermally stratified. Chlorophyll a, cyanobacteria (Aphanizomenon-Anabaena), and cyanotoxins (microcystin-LR) increased after harvesting, primarily in shallow lakes. Zooplankton abundance and biomass decreased after harvesting, particularly in stratified lakes where edible phytoplankton biomass declined. In the weakly or nonstratified lakes, declines in zooplankton biomass were associated with higher cyanobacterial biomass and cyanotoxins. Posttreatment change in total phosphorus concentration was strongly related to weather (greatest response in a wet year) and relative drainage basin size (drainage basin area to lake volume, r2 = 0,78, P << 0,01). There was no evidence that buffer strip width (20, 100, and 200 m) influenced lake response. These results suggest that activities within the entire watershed should be the focus of catchment-lake interactions.


Sign in / Sign up

Export Citation Format

Share Document