scholarly journals Opportunities and trade-offs for expanding agriculture in Canada’s North: an ecosystem service perspective

FACETS ◽  
2021 ◽  
Vol 6 ◽  
pp. 1728-1752
Author(s):  
Krishna Bahadur KC ◽  
Arthur Gill Green ◽  
Dan Wassmansdorf ◽  
Vivek Gandhi ◽  
Khurram Nadeem ◽  
...  

Climate change will create warmer temperatures, greater precipitation, and longer growing seasons in northern latitudes making agriculture increasingly possible in boreal regions. To assess the potential of any such expansion, this paper provides a first-order approximation of how much land could become suitable for four staple crops (corn, potato, soy, and wheat) in Canada by 2080. In addition, we estimate how the environmental trade-offs of northern agricultural expansion will impact critical ecosystem services. Primarily, we evaluate how the regulatory ecosystem services of carbon storage and sequestration and the habitat services supporting biodiversity would be traded for the provisioning services of food production. Here we show that under climate change projected by Canadian Earth System Model (CanESM2) Representative Concentration Pathway 4.5, ∼1.85 million km2 of land may become suitable for farming in Canada’s North, which, if utilized, would lead to the release of ∼15 gigatonnes of carbon if all forests and wetlands are cleared and plowed. These land-use changes would also have profound implications for Indigenous sovereignty and the governance of protected and conserved areas in Canada. These results highlight that research is urgently needed so that stakeholders can become aware of the scope of potential economic opportunities, cultural issues, and environmental trade-offs required for agricultural sustainability in Canada.

2018 ◽  
Vol 28 (7) ◽  
pp. 1884-1896 ◽  
Author(s):  
Katharina Albrich ◽  
Werner Rammer ◽  
Dominik Thom ◽  
Rupert Seidl

2019 ◽  
Vol 27 (2) ◽  
pp. 166-184 ◽  
Author(s):  
Maitane Erdozain ◽  
Erika C. Freeman ◽  
Camille Ouellet Dallaire ◽  
Sonja Teichert ◽  
Harry W. Nelson ◽  
...  

The Canadian boreal zone provides extractive goods and services (provisioning ecosystem services (PrES)) to domestic and global markets and makes a significant contribution to the Canadian economy. The intensity and location of these extractive activities, however, may positively or negatively affect the availability of other benefits that the Canadian and global society receive from the boreal. Where PrES compete, managing these activities along with their impacts to boreal ecosystems becomes a balancing act between the need for resource extraction and the continued availability of the other benefits from ecosystems. Management measures and policies are more likely to succeed if they are designed with foresight, which means accounting for how demand, a key driver of change in the boreal, may change in the future. To help this process, we present three divergent, yet plausible future scenarios based on the analysis of: (i) the capacity of the boreal to provide wood products, fossil fuels, metals and minerals, and hydropower and other renewables; (ii) past trends (1985–2015) and key events in the demand for these PrES; (iii) the interaction of demand for PrES with other drivers of change to the boreal zone; and (iv) the synergies and trade-offs between PrES. We find that historically and currently the capacity of the boreal to provide these PrES exceeds the amount currently supplied. However, the capacity of different PrES and location of extractive activities are spatially dispersed creating a spatial and temporal patchwork of associated risks to local ecosystem integrity and the supply of non-PrES. In addition, these scenarios suggest that the future of boreal PrES is very uncertain and highly dependent on how other drivers of change (namely governance and geopolitics, societal values and climate change) play out in the future. Given the spatial complexity, we find that the cumulative effect of these drivers (e.g., climate change) will determine what paths unfold for different areas of the boreal, and we conclude that careful consideration and planning must be given to ensure that the balance between PrES and non-PrES is maintained.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 584 ◽  
Author(s):  
Zuzheng Li ◽  
Xiaoqin Cheng ◽  
Hairong Han

Ecosystem services (ES), defined as benefits provided by the ecosystem to society, are essential to human well-being. However, it remains unclear how they will be affected by land-use changes due to lack of knowledge and data gaps. Therefore, understanding the response mechanism of ecosystem services to land-use change is critical for developing systematic and sound land planning. In this study, we aimed to explore the impacts of land-use change on the three ecosystem services, carbon storage (CS), flood regulation (FR), and soil conservation (SC), in the ecological conservation area of Beijing, China. We first projected land-use changes from 2015 to 2030, under three scenarios, i.e., Business as Usual (BAU), Ecological Land Protection (ELP), and Rapid Economic Development (RED), by interactively integrating the Markov model (Quantitative simulation) with the GeoSOS-FLUS model (Spatial arrangement), and then quantified the three ecosystem services by using a spatially explicit InVEST model. The results showed that built-up land would have the most remarkable growth during 2015–2030 under the RED scenario (2.52% increase) at the expense of cultivated and water body, while forest land is predicted to increase by 152.38 km2 (1.36% increase) under the ELP scenario. The ELP scenario would have the highest amount of carbon storage, flood regulation, and soil conservation, due to the strict protection policy on ecological land. The RED scenario, in which a certain amount of cultivated land, water body, and forest land is converted to built-up land, promotes soil conservation but triggers greater loss of carbon storage and flood regulation capacity. The conversion between land-use types will affect trade-offs and synergies among ecosystem services, in which carbon storage would show significant positive correlation with soil conservation through the period of 2015 to 2030, under all scenarios. Together, our results provide a quantitative scientific report that policymakers and land managers can use to identify and prioritize the best practices to sustain ecosystem services, by balancing the trade-offs among services.


Author(s):  
Huaxiang Chen ◽  
Lina Tang ◽  
Quanyi Qiu ◽  
Baosheng Wang ◽  
Weixiang Hu

It takes some time for changes to come in ecosystem services, and trade-offs occur in the process of changes. As opposed to a point in time, we use data spanning the years 2000–2005, 2005–2010, and 2010–2015 to study this research. After quantifying types of ecosystem services, this paper uses spatial correlation analysis and root-mean square deviation (RMSD) method to explore the relationships among ecosystem services and calculate the degree of spatial trade-offs (DT). Results show that the construction land increased substantially albeit at a declining rate of growth, and the degree of trade-offs (DT) increased with nontrivial differences in space. The hotspots for trade-offs are spatially aggregated in some areas but have varying patterns between ecosystem service pairs. The increasing area (IA) of construction land does not promote increased DT until the former reaches a certain threshold. With the exception of land use changes, type of industrial development is one of the key factors that influence the trade-offs of ecosystem services in the research region. We apply the models and methods used in this research to practice and discuss the practical value of our results for planners and decision makers vis-à-vis the design and instigation of appropriate development strategies.


2018 ◽  
Vol 13 (4) ◽  
pp. 045012 ◽  
Author(s):  
Martin Gutsch ◽  
Petra Lasch-Born ◽  
Chris Kollas ◽  
Felicitas Suckow ◽  
Christopher P O Reyer

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Purity Rima Mbaabu ◽  
Daniel Olago ◽  
Maina Gichaba ◽  
Sandra Eckert ◽  
René Eschen ◽  
...  

AbstractGrassland degradation and the concomitant loss of soil organic carbon is widespread in tropical arid and semi-arid regions of the world. Afforestation of degraded grassland, sometimes by using invasive alien trees, has been put forward as a legitimate climate change mitigation strategy. However, even in cases where tree encroachment of degraded grasslands leads to increased soil organic carbon, it may come at a high cost since the restoration of grassland-characteristic biodiversity and ecosystem services will be blocked. We assessed how invasion by Prosopis juliflora and restoration of degraded grasslands in a semi-arid region in Baringo, Kenya affected soil organic carbon, biodiversity and fodder availability. Thirty years of grassland restoration replenished soil organic carbon to 1 m depth at a rate of 1.4% per year and restored herbaceous biomass to levels of pristine grasslands, while plant biodiversity remained low. Invasion of degraded grasslands by P. juliflora increased soil organic carbon primarily in the upper 30 cm and suppressed herbaceous vegetation. We argue that, in contrast to encroachment by invasive alien trees, restoration of grasslands in tropical semi-arid regions can both serve as a measure for climate change mitigation and help restore key ecosystem services important for pastoralists and agro-pastoralist communities.


2016 ◽  
Vol 26 (6) ◽  
pp. 1633-1644 ◽  
Author(s):  
John H. Kim ◽  
Esteban G. Jobbágy ◽  
Robert B. Jackson

2020 ◽  
Author(s):  
Jullian Sone ◽  
Gabriela Gesualdo ◽  
Lívia Rosalem ◽  
Paulo Oliveira ◽  
Edson Wendland

<p>All land uses provide ecosystem services (ES), which have been depleted due to the lack of soil conservation practices along with the intensive use of land for meeting the water-energy-food nexus demand. The economic incentive is a first step towards attracting farmers’ interest in protecting and conserving ES. Farmers, stakeholders, and decision-makers need to understand the value and importance of watershed services through a straightforward cost-effective analysis of conserving and/or protecting them. Economic feasibility affects the volunteer enrolment in payment for ecosystem services (PES) programmes for adopting soil conservation practices in rural areas; nonetheless, it is still poorly understood regarding investments in ES restoration and preservation. There is very little information on the restoration of water provisioning in rural basins that participated in PES programmes. Additionally, most studies focus on programmes for one specific type of landowner, putting aside the plurality of landowners in the basin. It undermines PES programmes implementation when assessing individual preferences and willingness to pay. Thus, we aim to compare costs and benefits from incentivising soil conservation practices and forest restoration in a rural basin through a cost-benefit analysis and quantitative improvements of water provision and soil erosion control; moreover, we will use hydrological and economic-decision models to asses the uncertainties from the relationship between soil conservation practices and watershed services under climate change. The Guariroba River Basin (36,200 ha), located on the rural side of Campo Grande city ‒ Brazil, currently provides 34% of the drinking water demand in the urban area — once provided about 50% — since converting native Cerrado vegetation of the basin for cattle farming has led to a decrease in water provisioning due to soil degradation and, consequently, reservoir siltation. In 2009, the city hall launched a PES Programme called ‘Manancial Vivo’ (MVP). In this context, it is fundamental to understand how uncertainties in the input data, economic models structure, and parameters estimation are consistently integrated into hydro-economic models. By this, we will assess different hydro-economic scenarios of water availability to understand uncertainties and hydrological trade-offs. We expect to respond to some questions: whether the Brazilian PES programme model is environmentally and economically adequate; how water-food-energy insecurity nexus affects PES policies; and what role PES plays in building resilience to water supply systems and helping people to adapt to climate change effects.</p>


2020 ◽  
Author(s):  
Joris Eekhout ◽  
Carolina Boix-Fayos ◽  
Pedro Pérez-Cutillas ◽  
Joris de Vente

<p>The Mediterranean region has been identified as one of the most affected global hot-spots for climate change. Recent climate change in the Mediterranean can be characterized by faster increasing temperatures than the global mean and significant decreases in annual precipitation. Besides, important land cover changes have occurred, such as reforestation, agricultural intensification, urban expansion and the construction of many reservoirs, mainly with the purpose to store water for irrigation. Here we study the impacts of these changes on several ecosystem services in the Segura River catchment, a typical large Mediterranean catchment where many of the before mentioned changes have occurred in the last half century. We applied a hydrological model, coupled with a soil erosion and sediment transport model, to study the impact of climate and land cover change and reservoir construction on ecosystem services for the period 1971-2010. Eight ecosystem services indicators were defined, which include runoff, plant water stress, hillslope erosion, reservoir sediment yield, sediment concentration, reservoir storage, flood discharge and low flow. To assess larger land use changes, we also applied the model for an extended period (1952-2018) to the Taibilla subcatchment, a typical Mediterranean mountainous subcatchment, which plays an important role in the provision of water within the Segura River catchment. As main results we observed that climate change in the evaluated period is characterized by a decrease in precipitation and an increase in temperature. Detected land use change over the past 50 years is typical for many Mediterranean catchments. Natural vegetation in the headwaters increased due to agricultural land abandonment. Agriculture expanded in the central part of the catchment, which most likely is related to the construction of reservoirs in the same area. The downstream part of the catchment is characterized by urban expansion. While land use changed in more than 30% of the catchment, most impact on ecosystem services can be attributed to climate change and reservoir construction. All these changes have had positive and negative impacts on ecosystem services. The positive impacts include a decrease in hillslope erosion, sediment yield, sediment concentration and flood discharge (-21%, -18%, -82% and -41%, respectively). The negative impacts include an increase in plant water stress (+5%) and a decrease in reservoir storage (-5%). The decrease in low flow caused by land use change was counteracted by an increase in low flow due to reservoir construction. The results of our study highlight how relatively small climate and land use changes compared to the changes foreseen for the coming decades, have had an important impact on ecosystem services over the past 50 years.</p>


Sign in / Sign up

Export Citation Format

Share Document