Genetic diversity of loquat germplasm (Eriobotrya japonica (Thunb) Lindl) assessed by SSR markers

Genome ◽  
2005 ◽  
Vol 48 (1) ◽  
pp. 108-114 ◽  
Author(s):  
José Miguel Soriano ◽  
Carlos Romero ◽  
Santiago Vilanova ◽  
Gerardo Llácer ◽  
María Luisa Badenes

Genetic relationships among 40 loquat (Eriobotrya japonica (Thunb) Lindl) accessions that originated from different countries and that are part of the germplasm collection of the Instituto Valenciano de Investigaciones Agrarias (IVIA) (Valencia, Spain) were evaluated using microsatellites. Thirty primer pairs flanking microsatellites previously identified in Malus × domestica (Borkh.) were assayed. Thirteen of them amplified polymorphic products and unambiguously distinguished 34 genotypes from the 40 accessions analyzed. Six accessions showing identical marker patterns were Spanish local varieties thought to have been derived from 'Algerie' by a mutational process very common in loquat species. A total of 39 alleles were detected in the population studied, with a mean value of 2.4 alleles per locus. The expected and observed heterozygosities were 0.46 and 51% on average, respectively, leading to a negative value of the Wright's fixation index (–0.20). The values of these parameters indicate a smaller degree of genetic diversity in the set of loquat accessions analyzed than in other members of the Rosaceae family. Unweighted pair-group method (UPGMA) cluster analysis, based on Nei's genetic distance, generally grouped genotypes according to their geographic origins and pedigrees. The high number of alleles and the high expected heterozygosity detected with SSR markers developed in Malus × domestica (Borkh.) make them a suitable tool for loquat cultivar identification, confirming microsatellite marker transportability among genera in the Rosaceae family.Key words: Eriobotrya japonica, SSR markers, microsatellites, genetic diversity.

Genome ◽  
2003 ◽  
Vol 46 (2) ◽  
pp. 244-252 ◽  
Author(s):  
Carlos Romero ◽  
Andrzej Pedryc ◽  
Verónica Muñoz ◽  
Gerardo Llácer ◽  
María Luisa Badenes

Forty apricot cultivars with different geographic origins belonging to the germplasm collections of St. Istvan University (Budapest, Hungary) and the Instituto Valenciano de Investigaciones Agrarias (IVIA) (Valencia, Spain) were studied by means of SSR markers. The aim of the study was to determine the genetic relationships among genotypes from different eco-geographical groups. Sixteen primer pairs flanking microsatellite sequences in the peach genome were assayed. Eleven of them were polymorphic in the set of cultivars studied and allowed every genotype to be unambiguously distinguished. Genetic diversity in the population studied was analyzed using several variability parameters. A total of 34 alleles were detected with a mean value of 3.1 alleles/locus. The expected heterozygosity mean was 0.46 and the observed heterozygosity was 32% on an average leading to a high value of the Wright's fixation index (0.32). Additionally, UPGMA cluster analysis based on Nei's genetic distance grouped genotypes according to their geographic origins and pedigrees. SSR markers have proved to be an efficient tool for fingerprinting cultivars and conducting genetic-diversity studies in apricot.Key words: Prunus armeniaca, molecular markers, microsatellites, diversity.


2021 ◽  
Author(s):  
Harun Karcı ◽  
Aibibula Paizila ◽  
Murat Güney ◽  
Mederbek Zhaanbaev ◽  
Salih Kafkas

Abstract Pistachio (Pistacia vera L.) is the only cultivated species in Pistacia genus and one of the most important nut crop in terms of production. Pistachio cultivars have significant level of variation in their phenotypic appearance and productivity. Understanding the genetic diversity between pistachio cultivars could facilitate breeding programs. Simple sequence repeat (SSR) markers are powerful tools in genetic diversity and germplasm collection studies. However, published information about the characterization of large scale pistachio cultivar germplasm with adequate number of SSR markers is limited. In this study, sixty-six pistachio cultivars and genotypes originated from six different countries were characterized and fingerprinted by 74 genomic and 18 genic SSR markers. SSR analysis identified 576 alleles for all 66 cultivars and genotypes. The number of alleles per locus ranged from 2 to 20 (CUPOhBa1592) alleles with a mean value of six alleles per locus. The polymorphism information content (PIC) values ranged from 0.07 (CUPVEST2939) to 0.87 (CUPSiOh2460) with a mean PIC value of 0.58. The pistachio cultivars and genotypes were divided into five clusters according to Structure and UPGMA (Unweighted Pair Group Method with Arithmetic Average) analysis. Total of 61 cultivar specific alleles were detected in 34 cultivars, among them three primers (CUPOhBa1592, CUPBaPa1606 and CUPOhBa2127) produced more than four cultivar-specific loci therefore very promising for cultivar identification, fingerprinting and breeding studies in pistachio.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 471
Author(s):  
Jae-Ryoung Park ◽  
Won-Tae Yang ◽  
Yong-Sham Kwon ◽  
Hyeon-Nam Kim ◽  
Kyung-Min Kim ◽  
...  

The assessment of the genetic diversity within germplasm collections can be accomplished using simple sequence repeat (SSR) markers and association mapping techniques. The present study was conducted to evaluate the genetic diversity of a colored rice germplasm collection containing 376 black-purple rice samples and 172 red pericarp samples, conserved by Dong-A University. There were 600 pairs of SSR primers screened against 11 rice varieties. Sixteen informative primer pairs were selected, having high polymorphism information content (PIC) values, which were then used to assess the genetic diversity within the collection. A total of 409 polymorphic amplified fragments were obtained using the 16 SSR markers. The number of alleles per locus ranged from 11 to 47, with an average of 25.6. The average PIC value was 0.913, ranging from 0.855 to 0.964. Four hundred and nine SSR loci were used to calculate Jaccard’s distance coefficients, using the unweighted pair-group method with arithmetic mean cluster analysis. These accessions were separated into several distinctive groups corresponding to their morphology. The results provided valuable information for the colored rice breeding program and showed the importance of protecting germplasm resources and the molecular markers that can be derived from them.


2021 ◽  
pp. 36-48
Author(s):  
Farhana Afrin Vabna ◽  
Mohammad Zahidul Islam ◽  
Md. Ferdous Rezwan Khan Prince ◽  
Md. Ekramul Hoque

Aims: The aim of the study was to determine the genetic diversity of twenty four Boro rice landraces using rice genome specific twelve well known SSR markers. Study Design: Genomic DNA extraction, PCR amplification, Polyacrylamide gel electrophoresis (PAGE) and data analysis-these steps were followed to perform the research work. Data was analysed with the help of following software; POWERMAKER version 3.25, AlphaEaseFC (Alpha Innotech Corporation) version 4.0. UPGMA dendrogram was constructed using MEGA 5.1 software. Place and Duration of Study: The study was conducted at the Genetic Resources and Seed Division (GRSD), Bangladesh Rice Research Institute (BRRI), Joydebpur, Gazipur, Bangladesh during the period of November 2017 to March 2018. Methodology: Simple Sequence Repeat (SSR) markers were used to assay 24 landraces of Boro rice collected from the Gene Bank of Bangladesh Rice Research Institute (BRRI). Results: A total fifty four (54) alleles were detected, out of which forty five (45) polymorphic alleles were identified. The Polymorphic Information Content (PIC) of SSR markers ranged from 0.08 (RM447) to 0.84 (RM206) with an average value of PIC = 0.49. Gene diversity ranges from 0.08 (RM447) to 0.86 (RM206) with an average value of 0.52. The RM206 marker can be considered as the best marker among the studied markers for 24 rice landraces. Dendrogram based on Nei’s genetic distance using Unweighted Pair Group Method of Arithmetic Mean (UPGMA) indicated the segregation of 24 genotypes into three main clusters. Conclusion: The result revealed that SSR markers are very effective tools in the study of genetic diversity and genetic relationships and this result can be conveniently used for further molecular diversity analysis of rice genotypes to identify diverse parent for the development of high yielding variety in rice.


Genome ◽  
2005 ◽  
Vol 48 (5) ◽  
pp. 802-810 ◽  
Author(s):  
Muwang Li ◽  
Li Shen ◽  
Anying Xu ◽  
Xuexia Miao ◽  
Chengxiang Hou ◽  
...  

To determine genetic relationships among strains of silkworm, Bombyx mori L., 31 strains with different origins, number of generations per year, number of molts per generation, and morphological characters were studied using simple sequence repeat (SSR) markers. Twenty-six primer pairs flanking microsatellite sequences in the silkworm genome were assayed. All were polymorphic and unambiguously separated silkworm strains from each other. A total of 188 alleles were detected with a mean value of 7.2 alleles/locus (range 2–17). The average heterozygosity value for each SSR locus ranged from 0 to 0.60, and the highest one was 0.96 (Fl0516 in 4013). The mean polymorphism index content (PIC) was 0.66 (range 0.12–0.89). Unweighted pair group method with arithmetic means (UPGMA) cluster analysis of Nei's genetic distance grouped silkworm strains based on their origin. Seven major ecotypic silkworm groups were analyzed. Principal components analysis (PCA) for SSR data support their UPGMA clustering. The results indicated that SSR markers are an efficient tool for fingerprinting cultivars and conducting genetic-diversity studies in the silkworm.Key words: silkworm, Bombyx mori L., microsatellites, simple sequence repeat (SSR), genetic diversity.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 671
Author(s):  
Murat Guney ◽  
Salih Kafkas ◽  
Mozhgan Zarifikhosroshahi ◽  
Muhammet Ali Gundesli ◽  
Sezai Ercisli ◽  
...  

Genetic diversity and relationships of 54 wild-grown terebinths (Pistacia terebinthus L.) were determined using 40 SSR (simple sequence repeat) markers (38 in silico polymorphic SSR markers and 2 SSR markers). In silico polymorphic SSR analysis, 430 alleles were identified. The number of alleles per locus ranged from 3 to 25 with a mean value of 11 alleles per locus. The values of polymorphism information content (PIC) ranged from 0.34 (CUPOhBa4344) to 0.91 (CUPSiBa4072) with a mean PIC value of 0.68. Genetic distances were estimated according to the UPGMA (Unweighted Pair Group Method with Arithmetic Average), the Structure, and Principal Coordinates (PCoA) based clustering. The structure analysis and UPGMA clustering of the genotypes depicted two major clusters. PCoA results supported cluster analysis results. The dendrogram revealed two major clusters. Forty-two samples were obtained from the Kazankaya canyon and 12 samples from the Karanlıkdere region. The two regions are 130 km apart from each other but in a dendrogram, we did not find geographical isolation. The results proved the efficiency of SSRs for genetic diversity analysis in the terebinth. Based on the results, SSRs can be applied as a trustworthy tool for the evaluation of genetic diversity in terebinth genotypes. Molecular analysis on the terebinth genotypes in this study will promote the germplasm collection and the selection of the populations in future studies on terebinths for genetic mapping, genetic diversity, germplasm characterization, and rootstock breeding.


Genome ◽  
2003 ◽  
Vol 46 (3) ◽  
pp. 370-376 ◽  
Author(s):  
Georgios Banilas ◽  
John Minas ◽  
Costas Gregoriou ◽  
Cathrine Demoliou ◽  
Anna Kourti ◽  
...  

To evaluate germplasm variability and to discriminate between accessions of 'Ladolia', an ancient olive variety of Cyprus, different accessions from a germplasm collection were screened with 11 selected oligonucleotide primers in RAPD-PCRs. A total of 49 polymorphic markers were scored, the combination of which resulted in 70 distinct electrophoretic patterns. Based on either unique or combined patterns, all accessions were identified. Seven genotype-specific markers were detected. One RAPD marker could distinguish accessions according to fruit size. Genetic similarities between accessions, estimated using the Dice similarity coefficient, indicated a high degree of genetic diversity among 'Ladolia' accessions. Genetic relationships were estimated by the unweighted pair-group method with arithmetic averaging (UPGMA) and principal components analysis (PCA). Three main groups of accessions were detected. The first group was generally composed of accessions with small-sized fruits and could be further divided into two subgroups. According to PCA, most accessions with medium- or large-sized fruits were clustered together. Our results support previous observations suggesting that 'Ladolia' is actually a highly variable mixture of genetically distinct landraces.Key words: DNA polymorphism, germplasm variability, RAPD markers, Olea europaea.


Genome ◽  
2006 ◽  
Vol 49 (8) ◽  
pp. 938-949 ◽  
Author(s):  
Yiwu Chen ◽  
Dechun Wang ◽  
Prakash Arelli ◽  
Mohsen Ebrahimi ◽  
Randall L Nelson

Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe; HG) is one of the most destructive pests of soybean (Glycine max (L.) Merr.) in the United States. Over 100 SCN-resistant accessions within the USDA Soybean Germplasm Collection have been identified, but little is known about the genetic diversity of this SCN-resistant germplasm. The objective of this research was to evaluate the genetic variation and determine the genetic relationships among SCN-resistant accessions. One hundred twenty-two genotypes were evaluated by 85 simple sequence repeat (SSR) markers from 20 linkage groups. Non-hierarchical (VARCLUS) and hierarchical (Ward's) clustering were combined with multidimensional scaling (MDS) to determine relationships among tested lines. The 85 SSR markers produced 566 allelic fragments with a mean polymorphic information content (PIC) value of 0.35. The 122 lines were grouped into 7 clusters by 2 different clustering methods and the MDS results consistently corresponded to the assigned clusters. Assigned clusters were dominated by genotypes that possess one or more unique SCN resistance genes and were associated with geographical origins. The results of analysis of molecular variance (AMOVA) showed that the variation differences among clusters and individual lines were significant, but the differences among individuals within clusters were not significant.Key words: soybean cyst nematode resistance, genetic diversity, SSR markers, cluster analysis, soybean.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1643
Author(s):  
Didas Kimaro ◽  
Rob Melis ◽  
Julia Sibiya ◽  
Hussein Shimelis ◽  
Admire Shayanowako

Understanding the genetic diversity present amongst crop genotypes is an efficient utilization of germplasm for genetic improvement. The present study was aimed at evaluating genetic diversity and population structure of 48 pigeonpea genotypes from four populations collected from diverse sources. The 48 pigeonpea entries were genotyped using 33 simple sequence repeat (SSR) markers that are polymorphic to assess molecular genetic diversity and genetic relatedness. The informative marker combinations revealed a total of 155 alleles at 33 loci, with an average of 4.78 alleles detected per marker with the mean polymorphic information content (PIC) value of 0.46. Population structure analysis using model based revealed that the germplasm was grouped into two subpopulations. The analysis of molecular variance (AMOVA) revealed that 53.3% of genetic variation existed within individuals. Relatively low population differentiation was recorded amongst the test populations indicated by the mean fixation index (Fst) value of 0.032. The Tanzanian pigeonpea germplasm collection was grouped into three major clusters. The clustering pattern revealed a lack of relationship between geographic origin and genetic diversity. This study provides a foundation for the selection of parental material for genetic improvement.


Sign in / Sign up

Export Citation Format

Share Document