Mapping of FHB resistance QTLs in tetraploid wheat

Genome ◽  
2006 ◽  
Vol 49 (12) ◽  
pp. 1586-1593 ◽  
Author(s):  
Daryl J. Somers ◽  
George Fedak ◽  
John Clarke ◽  
Wenguang Cao

Triticum turgidum L var. durum is known to be particularly susceptible to infection by Fusarium graminearum, the causal agent for Fusarium head blight (FHB), which results in severe yield losses and grain contaminated with mycotoxins. This research was aimed at identifying FHB resistance in tetraploid wheat and mapping the location of FHB resistance genes. A tetraploid cross of durum wheat (‘Strongfield’) × Triticum carthlicum (‘Blackbird’) was used to generate a doubled-haploid (DH) population. This population was evaluated for type II resistance to F. graminearum in replicated greenhouse trials, in which heads were innoculated and the percent of infected spikelets was determined 21 days later. The population was also genotyped with microsatellite markers to construct a map of 424 loci, covering 2 052 cM. The FHB reaction and genotypic data were used to identify FHB resistance quantitative trait loci (QTLs). It was determined that 2 intervals on chromosomes 2BL and 6BS controlled FHB resistance in this tetraploid cross. The FHB resistance allele on chromosome 2BL (r2 = 0.26, logarithm of odds (LOD) = 8.5) was derived from ‘Strongfield’, and the FHB resistance allele on chromosome 6BS (r2 = 0.23, LOD = 6.6) was derived from ‘Blackbird’. Two other loci, on chromosomes 5AS and 2AL, were shown to regulate FHB infection and to have an epistatic effect on the FHB resistance QTL on chromosome 6BS. Further, the FHB resistance QTL peak on chromosome 6BS was clearly coincident with the known FHB resistance gene Fhb2, derived from Sumai 3. The results show that FHB resistance can be expressed in durum wheat, and that T. carthlicum and Triticum aestivum likely share a common FHB resistance gene on chromosome 6BS.

Genome ◽  
2012 ◽  
Vol 55 (12) ◽  
pp. 853-864 ◽  
Author(s):  
Yuefeng Ruan ◽  
André Comeau ◽  
François Langevin ◽  
Pierre Hucl ◽  
John M. Clarke ◽  
...  

Most tetraploid durum wheat (Triticum turgidum L var. durum) cultivars are susceptible to Fusarium head blight (FHB). This study reports novel quantitative trait loci (QTL) associated with FHB resistance. A backcross recombinant inbred line (BCRIL) population was developed from the cross BGRC3487/2*DT735, and 160 lines were evaluated for resistance to Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schwein. Petch) in field trials over 3 years (2008–2010) and to a F. graminearum 3-acetyl-deoxynivalenol (3-ADON) chemotype in greenhouse trials. The population was genotyped with 948 polymorphic loci using DArT and microsatellite markers. Eleven QTL were associated with FHB resistance under field conditions on chromosomes 2A, 3B, 5A, 5B, 7A, and 7B. Two of these, QFhb.usw-3B from BGRC3487 and QFhb.usw-7A2, were consistently detected over environments. The QFhb.usw-3B QTL was in a similar position to a resistance QTL in hexaploid wheat. The combination of the two QTL reduced field index by 53.5%–86.2%. Two QTL for resistance to the 3-ADON chemotype were detected on chromosomes 1B and 4B. Both BGRC3487 and DT735 could provide new sources of FHB resistance and the combination of QTL reported here could be valuable tools in breeding FHB-resistant durum wheat.


2019 ◽  
Vol 109 (10) ◽  
pp. 1664-1675 ◽  
Author(s):  
Jemanesh K. Haile ◽  
Amidou N’Diaye ◽  
Sean Walkowiak ◽  
Kirby T. Nilsen ◽  
John M. Clarke ◽  
...  

Fusarium head blight (FHB) is a major fungal disease affecting wheat production worldwide. Since the early 1990s, FHB, caused primarily by Fusarium graminearum, has become one of the most significant diseases faced by wheat producers in Canada and the United States. The increasing FHB problem is likely due to the increased adoption of conservation tillage practices, expansion of maize production, use of susceptible wheat varieties in rotation, and climate variability. Durum wheat (Triticum turgidum sp. durum) is notorious for its extreme susceptibility to FHB and breeding for resistance is complicated because sources of FHB resistance are rare in the primary gene pool of tetraploid wheat. Losses due to this disease include yield, test weight, seed quality, food and feed quality, and when severe, market access. More importantly, it is the contamination with mycotoxins, such as deoxynivalenol, in Fusarium-infected durum kernels that causes the most serious economic as well as food and feed safety concerns. Several studies and thorough reviews have been published on germplasm development and breeding for FHB resistance and the genetics and genomics of FHB resistance in bread or common wheat (T. aestivum); however, similar reviews have not been conducted in durum wheat. Thus, the aim of this review is to summarize and discuss the recent research efforts to mitigate FHB in durum wheat, including quantitative trait locus mapping, genome-wide association studies, genomic prediction, mutagenesis and characterization of genes and pathways involved in FHB resistance. It also highlights future directions, FHB-resistant germplasm, and the potential role of morphological traits to enhance FHB resistance in durum wheat.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ehsan Sari ◽  
Adrian L. Cabral ◽  
Brittany Polley ◽  
Yifang Tan ◽  
Emma Hsueh ◽  
...  

Abstract Background Fusarium head blight (FHB) resistance in the durum wheat breeding gene pool is rarely reported. Triticum turgidum ssp. carthlicum line Blackbird is a tetraploid relative of durum wheat that offers partial FHB resistance. Resistance QTL were identified for the durum wheat cv. Strongfield × Blackbird population on chromosomes 1A, 2A, 2B, 3A, 6A, 6B and 7B in a previous study. The objective of this study was to identify the defense mechanisms underlying the resistance of Blackbird and report candidate regulator defense genes and single nucleotide polymorphism (SNP) markers within these genes for high-resolution mapping of resistance QTL reported for the durum wheat cv. Strongfield/Blackbird population. Results Gene network analysis identified five networks significantly (P < 0.05) associated with the resistance to FHB spread (Type II FHB resistance) one of which showed significant correlation with both plant height and relative maturity traits. Two gene networks showed subtle differences between Fusarium graminearum-inoculated and mock-inoculated plants, supporting their involvement in constitutive defense. The candidate regulator genes have been implicated in various layers of plant defense including pathogen recognition (mainly Nucleotide-binding Leucine-rich Repeat proteins), signaling pathways including the abscisic acid and mitogen activated protein (MAP) kinase, and downstream defense genes activation including transcription factors (mostly with dual roles in defense and development), and cell death regulator and cell wall reinforcement genes. The expression of five candidate genes measured by quantitative real-time PCR was correlated with that of RNA-seq, corroborating the technical and analytical accuracy of RNA-sequencing. Conclusions Gene network analysis allowed identification of candidate regulator genes and genes associated with constitutive resistance, those that will not be detected using traditional differential expression analysis. This study also shed light on the association of developmental traits with FHB resistance and partially explained the co-localization of FHB resistance with plant height and maturity QTL reported in several previous studies. It also allowed the identification of candidate hub genes within the interval of three previously reported FHB resistance QTL for the Strongfield/Blackbird population and associated SNPs for future high resolution mapping studies.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
Gaetano Bentivenga ◽  
Alfio Spina ◽  
Karim Ammar ◽  
Maria Allegra ◽  
Santa Olga Cacciola

In 2009, a set of 35 cultivars of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) of Italian origin was screened for fusarium head blight (FHB) susceptibility at CIMMYT (Mexico) and in the 2019–20 cropping season, 16 of these cultivars, which had been included in the Italian National Plant Variety Register, were tested again in southern and northern Italy. Wheat cultivars were artificially inoculated during anthesis with a conidial suspension of Fusarium graminearum sensu lato using a standard spray inoculation method. Inoculum was a mixture of mono-conidial isolates sourced in the same areas where the trials were performed. Isolates had been characterized on the basis of morphological characteristics and by DNA PCR amplification using a specific primer set and then selected for their virulence and ability to produce mycotoxins. The susceptibility to FHB was rated on the basis of the disease severity, disease incidence and FHB index. Almost all of the tested cultivars were susceptible or very susceptible to FHB with the only exception of “Duprì”, “Tiziana” and “Dylan” which proved to be moderately susceptible. The susceptibility to FHB was inversely correlated with the plant height and flowering biology, the tall and the late heading cultivars being less susceptible.


2012 ◽  
Vol 92 (4) ◽  
pp. 809-813 ◽  
Author(s):  
A. K. Singh ◽  
J. M. Clarke ◽  
R. E. Knox ◽  
R. M. DePauw ◽  
T. N. McCaig ◽  
...  

Singh, A. K., Clarke, J. M., Knox, R. E., DePauw, R. M., McCaig, T. N., Fernandez, M. R. and Clarke, F. R. 2012. Transcend durum wheat. Can. J. Plant Sci. 92: 809–813. Transcend durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.] is adapted to the durum production area of the Canadian prairies. It combines high grain yield, grain protein concentration, test weight, yellow grain and dough pigment, and low grain cadmium concentration. Transcend has strong straw, slightly more days to maturity, and improved Fusarium head blight resistance compared to Strongfield.


2009 ◽  
Vol 44 (No. 4) ◽  
pp. 147-159 ◽  
Author(s):  
Srinivasachary ◽  
N. Gosman ◽  
A. Steed ◽  
S. Faure ◽  
R. Bayles ◽  
...  

Fusarium head blight (FHB) is a destructive disease of wheat worldwide. We aimed to map QTL for FHB resistance in RL4137, a FHB resistant line derived from Frontana using 90 recombinant inbred lines (RIL) from a cross between RL4137 and the moderately FHB resistant variety Timgalen. A total of seven putative FHB resistance QTL (1B, 2B, 3A, 6A, 6B, 7A and 7D) were identified and in all but one instance, the alleles from RL4137 had a positive effect on FHB resistance. The QTL, Qfhs.jic-2band Qfhs.jic-6b contributed by the alleles from RL4137 and Timgalen, respectively were detected in multiple trials. Our study also identified three QTL for plant height (2B, 4A and 5B), two QTL for weight of infected spikelets from infected ears (2B and 6A) and one QTL for &ldquo;awns&rdquo; (2B). The QTL mapped on 2B for PH, WIS and awns co-localized with Qfhs.jic-2b. The FHB QTL on 1B and 6B were not associated with PH QTL and that the minor PH QTL on 4A and 5B, did not co-localise with any other FHB resistance QTL.


2009 ◽  
Vol 89 (3) ◽  
pp. 505-509 ◽  
Author(s):  
J. M. Clarke ◽  
R. E. Knox ◽  
R. M. DePauw ◽  
F. R. Clarke ◽  
M. R. Fernandez ◽  
...  

Brigade durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.] is adapted to the durum production area of the Canadian prairies. It combines yield similar to the checks, very strong gluten, and low grain cadmium concentration. Brigade has better straw strength than Strongfield, slightly later maturity, and Fusarium head blight resistance better than other currently registered Canadian durum cultivars.Key words: Triticum turgidum L. subsp. durum (Desf.) Husn., durum wheat, cultivar description, yield, protein, disease resistance


2010 ◽  
Vol 122 (3) ◽  
pp. 649-658 ◽  
Author(s):  
Kristin Simons ◽  
Zewdie Abate ◽  
Shiaoman Chao ◽  
Wenjun Zhang ◽  
Matt Rouse ◽  
...  

2010 ◽  
Vol 90 (3) ◽  
pp. 353-357 ◽  
Author(s):  
A K Singh ◽  
J M Clarke ◽  
R M DePauw ◽  
R E Knox ◽  
F R Clarke ◽  
...  

Enterprise durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.] is adapted to the durum production area of the Canadian prairies. It combines high grain yield, grain protein concentration, test weight, yellow grain pigment, and low grain cadmium concentration. Enterprise has slightly weaker straw strength, similar days to maturity, and improved fusarium head blight resistance compared with strongfield. Key words: Triticum turgidum L. subsp. durum (Desf.) Husn., durum wheat, cultivar description, grain yield, yellow pigment, cadmium


2010 ◽  
Vol 90 (6) ◽  
pp. 791-801 ◽  
Author(s):  
J.M. Clarke ◽  
F.R. Clarke ◽  
C.J. Pozniak

The first durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn.] cultivar developed in Canada was Stewart 63, registered in 1963. The objective of this paper is to document genetic progress in Canadian durum cultivars since that time. The genetic potential for grain yield in the main durum production area increased by about 0.7% per year and shows no sign of tapering off. This genetic potential has been captured in commercial farm yields, which increased by 1.5% per year during the same period. Grain protein concentration tended to increase slightly over the same time period because of the requirement for minimum protein concentration for cultivar release in Canada. Based on a study of two unselected doubled haploid populations, it was estimated that genetic gain for grain yield was reduced by 8 to 15% because of the negative correlation of protein concentration with yield. Yellow pigment concentration of semolina increased during the study period, especially after the mid 1990s, when higher pigment became an important breeding target. Gluten strength has also been increased since the mid 1990s. Grain cadmium concentration was reduced by about 50% to satisfy the requirements of certain export markets. Resistance to leaf and stem rust was maintained in all cultivars released since Stewart 63. In the past 10 yr, breeding has exploited genetic variation in resistance to Fusarium head blight to produce cultivars such as Brigade and CDC Verona with intermediate levels of resistance. There appears to be remaining genetic variability for all major traits in lines currently in registration trials.


Sign in / Sign up

Export Citation Format

Share Document