Duplication of the structural gene for the plastid-specific isozyme of aldolase in Cicer

Genome ◽  
1991 ◽  
Vol 34 (1) ◽  
pp. 151-155 ◽  
Author(s):  
P. M. Gaur ◽  
A. E. Slinkard

Fructose-bisphosphate aldolase (ALD, EC 4.1.2.13) was analysed in Cicer arietinum L. (the cultivated chickpea) and all eight annual wild Cicer species, C. bijugum Rech., C. chorassanicum (Bge.) M. Pop., C. cuneatum Rich., C. echinospermum Davis, C. judaicum Boiss., C. pinnatifidum J. &S., C. reticulatum Lad., and C. yamashitae Kit. Duplicate genes were identified for the plastid-specific isozyme of ALD in C. arietinum and all wild species except C. yamashitae and one accession of C. reticulatum. Gene duplication was indicated by the presence of a true-breeding five-banded zymotype of the tetrameric plastid ALD in these species. Monogenic inheritance was confirmed for the alleles of one of the loci. The occurrence of ALD gene duplication in most of the annual Cicer species suggests that this duplication is of ancient origin. However, this duplication must have occurred after divergence of Cicer from the closely related genera Pisum and Lens because the plastid ALD is controlled monogenically in these latter two genera.Key words: Cicer, isozymes, aldolase, gene duplication.

2008 ◽  
Vol 59 (4) ◽  
pp. 383 ◽  
Author(s):  
E. J. Knights ◽  
R. J. Southwell ◽  
M. W. Schwinghamer ◽  
S. Harden

Phytophthora root rot caused by Phytophthora medicaginis is a major disease of chickpea in Australia. Only partial resistance, derived from chickpea, is available in Australian cultivars. Five wild Cicer species were compared with chickpea cv. Jimbour (moderately resistant) in a field experiment. The proportions of accessions with significantly lower (P < 0.05) disease scores, where lower scores equate to higher resistance, were 9/9 for C. echinospermum, 9/21 for C. bijugum, 1/4 for C. judaicum, 1/29 for C. reticulatum, and 0/3 for C. pinnatifidum. The resistance of C. echinospermum (7/7 accessions) but not the other Cicer species was reproduced in a greenhouse test. Nine out of 30 chickpea × C. echinospermum-derived lines were as resistant as the C. echinospermum parents in a separate greenhouse experiment. C. echinospermum appears to be the best of the sources we examined for breeding chickpea cultivars resistant to P. medicaginis.


2013 ◽  
Vol 1 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Yanling Zeng ◽  
Xiaofeng Tan ◽  
Baoming Wang ◽  
Hongxu Long ◽  
Shuxian Xu ◽  
...  

1990 ◽  
Vol 3 (1) ◽  
pp. 145
Author(s):  
DJ Colgan

This paper is a review of the use of information regarding the presence of duplicate genes and their regulation in systematics. The review concentrates on data derived from protein electrophoresis and restriction fragment length polymorphism analysis. The appearance of a duplication in a subset of a group of species implies that the members of the subset belong to the same clade. Suppression of the duplication may render this clade apparently paraphyletic, but may itself be informative of relations within the lineage through patterns of loss of expression in all, or some tissues, or through restrictions of the formation of functional heteropolymers in polymeric enzymes. Examples are given of studies which have used such information to establish phylogenetic hypotheses at the family level, to identify an auto- or allo-polyploid origin of polyploid species and to determine whether there have been single or multiple origins of such species. The likelihood of homoplasy in the patterns of appearance and regulation of duplicates depends on the molecular basis of the duplication. In particular, the contrast between the expected consequences of tandem duplication and the expression of pseudogenes emphasises the value of determining the mechanism of the original duplication. Many instances of sporadic gene duplication are now known, and polyploidisation is a common event in the evolutionary history of both plants and animals. So the opportunities to discover duplicationrelated characters will arise in many systematic studies. A program is presented to increase the chances that such useful information will be recognisable during the studies.


2003 ◽  
Vol 54 (5) ◽  
pp. 429 ◽  
Author(s):  
J. S. Croser ◽  
F. Ahmad ◽  
H. J. Clarke ◽  
K. H. M. Siddique

Efforts to improve the yield and quality of cultivated chickpea (Cicer arietinum L.) are constrained by a low level of intraspecific genetic diversity. Increased genetic diversity can be achieved via the hybridisation of the cultivated species with the unimproved 'wild' relatives from within the 43 species of the Cicer genus. To date, the 8 species sharing an annual growth habit and chromosome number with C. arietinum have been the primary focus of screening and introgression efforts. Screening of these species has uncovered morphological characteristics and resistance to a number of abiotic and biotic stresses that are of potential value to chickpea improvement programs. Detailed analysis of protein and DNA, karyotyping, and crossability studies have begun to elucidate the relationships between the annual Cicer species. In comparison, perennial species have received little attention due to difficulties in collection, propagation, and evaluation. This review discusses the progress towards an understanding of genetic relationships between the Cicer species, and the introgression of genes from the wild Cicer species into the cultivated species.


2018 ◽  
Vol 12 ◽  
pp. 117793221880970 ◽  
Author(s):  
Arwa A Mohammed ◽  
Ayman MH ALnaby ◽  
Solima M Sabeel ◽  
Fagr M AbdElmarouf ◽  
Amina I Dirar ◽  
...  

Background: Mycetoma is a distinct body tissue destructive and neglected tropical disease. It is endemic in many tropical and subtropical countries. Mycetoma is caused by bacterial infections ( actinomycetoma) such as Streptomyces somaliensis and Nocardiae or true fungi ( eumycetoma) such as Madurella mycetomatis. To date, treatments fail to cure the infection and the available marketed drugs are expensive and toxic upon prolonged usage. Moreover, no vaccine was prepared yet against mycetoma. Aim: The aim of this study is to predict effective epitope-based vaccine against fructose-bisphosphate aldolase enzymes of M. mycetomatis using immunoinformatics approaches. Methods and materials: Fructose-bisphosphate aldolase of M. mycetomatis sequence was retrieved from NCBI. Different prediction tools were used to analyze the nominee’s epitopes in Immune Epitope Database for B-cell, T-cell MHC class II and class I. Then the proposed peptides were docked using Autodock 4.0 software program. Results and conclusions: The proposed and promising peptides KYLQ show a potent binding affinity to B-cell, FEYARKHAF with a very strong binding affinity to MHC I alleles and FFKEHGVPL that shows a very strong binding affinity to MHC II and MHC I alleles. This indicates a strong potential to formulate a new vaccine, especially with the peptide FFKEHGVPL which is likely to be the first proposed epitope-based vaccine against fructose-bisphosphate aldolase of M. mycetomatis. This study recommends an in vivo assessment for the most promising peptides especially FFKEHGVPL.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
María López-Pedrouso ◽  
José M. Lorenzo ◽  
Paula Borrajo ◽  
Daniel Franco

The search for antioxidant peptides as health-promoting agents is of great scientific interest for their biotechnological applications. Thus, the main goal of this study was to identify antioxidant peptides from pork liver using alcalase, bromelain, flavourzyme, and papain enzymes. All liver hydrolysates proved to be of adequate quality regarding the ratio EAA/NEAA, particularly flavourzyme hydrolysates. The peptidomic profiles were significantly different for each enzyme and their characterizations were performed, resulting in forty-four differentially abundant peptides among the four treatments. Porcine liver hydrolysates from alcalase and bromelain are demonstrated to have the most antioxidant capacity. On the other hand, hydrophobic amino acid residues (serine, threonine, histidine and aspartic acid) might be reducing the hydrolysates antioxidant capacity. Seventeen peptides from collagen, albumin, globin domain-containing protein, cytochrome β, fructose-bisphosphate aldolase, dihydropyrimidinase, argininosuccinate synthase, and ATP synthase seem to be antioxidant. Further studies are necessary to isolate these peptides and test them in in vivo experiments.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Mateus Rodrigues Pereira ◽  
Bianca Castro Gouvêa ◽  
Francismar Corrêa Marcelino-Guimarães ◽  
Humberto Josué de Oliveira Ramos ◽  
Maurilio Alves Moreira ◽  
...  

AbstractAsian soybean rust (ASR), which is incited by the fungus Phakopsora pachyrhizi, is considered one of the most aggressive diseases to the soybean culture. There are no commercial cultivars immune to the pathogen and the control measure currently used is the application of fungicides that harms the environment and increases production costs. For a better understanding of the host’s response to the pathogen at the molecular level, two soybean genotypes were analyzed (PI561356, resistant to ASR and Embrapa 48, susceptible) at 72 hours and 192 hours after inoculation with spores of P. pachyrhizi. Leaf protein profiles of the plants were compared by two-dimensional electrophoresis associated with mass spectrometry (MS). Twenty-two protein spots presented different levels when the two treatments were compared (inoculated vs. non-inoculated). From those, twelve proteins were identified by MS analysis. Some of them are involved in metabolic pathways related to plant defense against pathogens, as in the case of carbonic anhydrase, 1-deoxy-D-xylulose- 5-phosphate reductoisomerase, fructose-bisphosphate aldolase and glutamine synthetase. The possible biochemical-physiological meanings of our findings are discussed.


2019 ◽  
Author(s):  
Jinwei Suo ◽  
Heng Zhang ◽  
Qi Zhao ◽  
Nan Zhang ◽  
Yongxue Zhang ◽  
...  

Alkali-salinity exerts severe osmotic, ionic and high-pH stresses to plants. To understand the alkali-salinity responsive mechanisms underlying photosynthetic modulation and reactive oxygen species (ROS) homeostasis, physiological and diverse quantitative proteomics analyses of alkaligrass (Puccinellia tenuiflora) under Na2CO3 stress were conducted. In addition, Western blot, real-time PCR, and transgenic techniques were applied to validate the proteomic results and test the functions of the Na2CO3-responsive proteins. A total of 104 and 102 Na2CO3-responsive proteins were identified in leaves and chloroplasts, respectively. In addition, 84 Na2CO3-responsive phosphoproteins were identified, including 56 new phosphorylation sites in 56 phosphoproteins from chloroplasts, which are crucial for the regulation of photosynthesis, ion transport, signal transduction and energy homeostasis. A full-length PtFBA encoding an alkaligrass chloroplastic fructose-bisphosphate aldolase (FBA) was overexpressed in wild-type cells of cyanobacterium Synechocystis sp. Strain PCC 6803, leading to enhanced Na2CO3 tolerance. All these results indicate that thermal dissipation, state transition, cyclic electron transport, photorespiration, repair of photosystem (PS) II, PSI activity, and ROS homeostasis were altered in response to Na2CO3 stress, and they have improved our understanding of the Na2CO3-responsive mechanisms in halophytes.


Sign in / Sign up

Export Citation Format

Share Document