Identification of short tandemly repeated sequences in extrachromosomal circular DNAs from Drosophila melanogaster embryos

Genome ◽  
1993 ◽  
Vol 36 (2) ◽  
pp. 244-254 ◽  
Author(s):  
S. Renault ◽  
F. Degroote ◽  
G. Picard

A sequence (scl) belonging to the recently identified dodeca satellite family was found to be a major family of extrachromosomal circular DNA molecules from Drosophila melanogaster embryos. The basic unit consists of the 11-bp repeat 5′ ACTGGTCCCGT 3′, is 63% G + C rich, and shares some similarity with the Escherichia coli chi sequence. This family accounts for only about 0.06% of the genome but very likely for a higher proportion of the circular DNA molecules. It is organized in the genome into at least five main clusters contained in DNA fragments larger than 20 kb and several minor clusters. These clusters are located in the heterochromatic pericentromeric regions. Two other families of simple repeated sequences, the 1.686 g/cm3 (5′ AATAACATAG 3′) and the 1.705 g/cm3 (5′ AAGAG 3′) satellite DNAs, were also found in circular DNAs, while another family, the 1.672 g/cm3 (5′ AATAT 3′), was not detected. The representation of the simple repeated sequences in circular molecules is not correlated to their genomic representation. Among the seven families of sequences identified to date in extrachromosomal circular DNAs from embryos, the dodeca satellite, the 240-bp repeat of the rDNA intergenic spacer, and the 1.688 and 1.705 g/cm3 satellite DNAs are the most represented families, while the 5S genes, the histone genes, and the 1.686 g/cm3 satellite DNA are present in a lower amount.Key words: D. melanogaster, extrachromosomal circular DNAs, repeated sequences, satellite DNA.

1974 ◽  
Vol 24 (1) ◽  
pp. 43-57 ◽  
Author(s):  
G. D. Clark-Walker ◽  
George L. Gabor Miklos

SUMMARYWe propose a general hypothesis involving properties of circular DNA which can explain such phenomena as thepetitemutation, suppressiveness, and the polarity observed in mitochondrial recombination in the yeastSaccharomyces cerevisiae. This hypothesis involves excision and insertion events between circular DNA molecules as well as structural rearrangements in the DNA generated by these events. The special properties of circular DNA have been considered in analysing recombination, and a number of results are obtained which are not intuitively apparent.This hypothesis can be applied to any situation involving circular DNA such as bacterial plasmids and cytoplasmic circular DNAs, where the opportunity exists for recombination and rearrangement events.


2020 ◽  
Vol 66 (5) ◽  
pp. 889-894 ◽  
Author(s):  
Ryan M. Hull ◽  
Jonathan Houseley

Abstract Carefully maintained and precisely inherited chromosomal DNA provides long-term genetic stability, but eukaryotic cells facing environmental challenges can benefit from the accumulation of less stable DNA species. Circular DNA molecules lacking centromeres segregate randomly or asymmetrically during cell division, following non-Mendelian inheritance patterns that result in high copy number instability and massive heterogeneity across populations. Such circular DNA species, variously known as extrachromosomal circular DNA (eccDNA), microDNA, double minutes or extrachromosomal DNA (ecDNA), are becoming recognised as a major source of the genetic variation exploited by cancer cells and pathogenic eukaryotes to acquire drug resistance. In budding yeast, circular DNA molecules derived from the ribosomal DNA (ERCs) have been long known to accumulate with age, but it is now clear that aged yeast also accumulate other high-copy protein-coding circular DNAs acquired through both random and environmentally-stimulated recombination processes. Here, we argue that accumulation of circular DNA provides a reservoir of heterogeneous genetic material that can allow rapid adaptation of aged cells to environmental insults, but avoids the negative fitness impacts on normal growth of unsolicited gene amplification in the young population.


Genetics ◽  
1993 ◽  
Vol 134 (4) ◽  
pp. 1149-1174 ◽  
Author(s):  
A R Lohe ◽  
A J Hilliker ◽  
P A Roberts

Abstract Heterochromatin in Drosophila has unusual genetic, cytological and molecular properties. Highly repeated DNA sequences (satellites) are the principal component of heterochromatin. Using probes from cloned satellites, we have constructed a chromosome map of 10 highly repeated, simple DNA sequences in heterochromatin of mitotic chromosomes of Drosophila melanogaster. Despite extensive sequence homology among some satellites, chromosomal locations could be distinguished by stringent in situ hybridizations for each satellite. Only two of the localizations previously determined using gradient-purified bulk satellite probes are correct. Eight new satellite localizations are presented, providing a megabase-level chromosome map of one-quarter of the genome. Five major satellites each exhibit a multi-chromosome distribution, and five minor satellites hybridize to single sites on the Y chromosome. Satellites closely related in sequence are often located near one another on the same chromosome. About 80% of Y chromosome DNA is composed of nine simple repeated sequences, in particular (AAGAC)n (8 Mb), (AAGAG)n (7 Mb) and (AATAT)n (6 Mb). Similarly, more than 70% of the DNA in chromosome 2 heterochromatin is composed of five simple repeated sequences. We have also generated a high resolution map of satellites in chromosome 2 heterochromatin, using a series of translocation chromosomes whose breakpoints in heterochromatin were ordered by N-banding. Finally, staining and banding patterns of heterochromatic regions are correlated with the locations of specific repeated DNA sequences. The basis for the cytochemical heterogeneity in banding appears to depend exclusively on the different satellite DNAs present in heterochromatin.


2018 ◽  
Vol 51 (1) ◽  
Author(s):  
Sohail Akhtar ◽  
Muhammad Nouman Tahir ◽  
Imran Amin ◽  
Rana Binyamin ◽  
Shahid Mansoor

Genetics ◽  
1972 ◽  
Vol 72 (3) ◽  
pp. 431-439
Author(s):  
E C Travaglini ◽  
J Petrovic ◽  
J Schultz

ABSTRACT A tentative evolutionary pattern has been found for two classes of the multiple satellite DNA's found in the genus Drosophila. The satellite DNA's from five Drosophila species (D. melanogaster, D. simulans, D. nasuta, D. virilis and D. hydei) were analyzed and found to fall into three arbitrary CsCl buoyant density classes: Class I, ρ = 1.661-1.669 g cm-3, DNA molecules composed of primarily dA and dT moieties; Class II, ρ = 1.685 and ρ = 1.692, DNA molecules of low GC content; and Class III, ρ = 1.711, a DNA of high GC composition. The dAT satellite DNA's appear in all the species studied except D. hydei, the species of most recent evolutionary divergence, whereas the heavy satellite appears only in the two species of most recent divergence, D. virilis and D. hydei.


1983 ◽  
Vol 3 (4) ◽  
pp. 605-612 ◽  
Author(s):  
J R Rusche ◽  
W K Holloman

Using a nitrocellulose filter binding assay, we have partially purified a protein from mitotic cells of Ustilago maydis that binds preferentially to covalently closed circular duplex DNA. DNA containing single- or double-strand breaks is bound poorly by the protein. Once formed, the DNA-protein complex is stable, resisting dissociation in high salt. However, when a DNA strand is broken, the complex appears to dissociate. The protein binds equally well to form I DNA of phi X174 or the plasmid pBR322, but has a higher affinity for a hybrid plasmid containing a cloned region of Drosophila melanogaster satellite DNA.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 243-256 ◽  
Author(s):  
Carlos Polanco ◽  
Ana I González ◽  
Álvaro de la Fuente ◽  
Gabriel A Dover

Abstract The multigene family of rDNA in Drosophila reveals high levels of within-species homogeneity and between-species diversity. This pattern of mutation distribution is known as concerted evolution and is considered to be due to a variety of genomic mechanisms of turnover (e.g., unequal crossing over and gene conversion) that underpin the process of molecular drive. The dynamics of spread of mutant repeats through a gene family, and ultimately through a sexual population, depends on the differences in rates of turnover within and between chromosomes. Our extensive molecular analysis of the intergenic spacer (IGS) and internal transcribed spacer (ITS) spacer regions within repetitive rDNA units, drawn from the same individuals in 10 natural populations of Drosophila melanogaster collected along a latitudinal cline on the east coast of Australia, indicates a relatively fast rate of X-Y and X-X interchromosomal exchanges of IGS length variants in agreement with a multilineage model of homogenization. In contrast, an X chromosome-restricted 24-bp deletion in the ITS spacers is indicative of the absence of X-Y chromosome exchanges for this region that is part of the same repetitive rDNA units. Hence, a single lineage model of homogenization, coupled to drift and/or selection, seems to be responsible for ITS concerted evolution. A single-stranded exchange mechanism is proposed to resolve this paradox, based on the role of the IGS region in meiotic pairing between X and Y chromosomes in D. melanogaster.


Nature ◽  
1967 ◽  
Vol 216 (5116) ◽  
pp. 647-652 ◽  
Author(s):  
BRUCE HUDSON ◽  
JEROME VINOGRAD
Keyword(s):  

Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 333-341
Author(s):  
W Stephan ◽  
S Cho

Abstract A simulation model of sequence-dependent amplification, unequal crossing over and mutation is analyzed. This model predicts the spontaneous formation of tandem-repetitive patterns of noncoding DNA from arbitrary sequences for a wide range of parameter values. Natural selection is found to play an essential role in this self-organizing process. Natural selection which is modeled as a mechanism for controlling the length of a nucleotide string but not the sequence itself favors the formation of tandem-repetitive structures. Two measures of sequence heterogeneity, inter-repeat variability and repeat length, are analyzed in detail. For fixed mutation rate, both inter-repeat variability and repeat length are found to increase with decreasing rates of (unequal) crossing over. The results are compared with data on micro-, mini- and satellite DNAs. The properties of minisatellites and satellite DNAs resemble the simulated structures very closely. This suggests that unequal crossing over is a dominant long-range ordering force which keeps these arrays homogeneous even in regions of very low recombination rates, such as at satellite DNA loci. Our analysis also indicates that in regions of low rates of (unequal) crossing over, inter-repeat variability is maintained at a low level at the expense of much larger repeat units (multimeric repeats), which are characteristic of satellite DNA. In contrast, the microsatellite data do not fit the proposed model well, suggesting that unequal crossing over does not act on these very short tandem arrays.


Sign in / Sign up

Export Citation Format

Share Document