Evolution of the high molecular weight glutenin loci of the A, B, D, and G genomes of wheat

Genome ◽  
1999 ◽  
Vol 42 (2) ◽  
pp. 296-307 ◽  
Author(s):  
Robin G Allaby ◽  
Monica Banerjee ◽  
Terence A Brown

We used PCR to obtain phylogenetically informative sequences from the high molecular weight glutenin genes of wheat. The validity of partial sequence comparisons as a means of studying glutenin phylogenetics was established by constructing neighbour-joining trees from partial alignments of 12 published glutenin allele sequences. PCR was then used to obtain 20 novel glutenin allele sequences from various Triticum and Aegilops species, including a 3000 year old preserved wheat. A neighbour-joining tree derived from all known glutenin allele sequences had eight clades, representing the eight loci from which the allele sequences were derived, and was split into two halves, one comprising alleles from the Glu-1-1 loci and the other comprising Glu-1-2 alleles. The topology was compatible with the postulated relationships between the A, B, D, and G genomes. The Glu gene duplication event was tentatively dated at 7.2-10.0 million years ago (MYA), the origin of the four genomes at 5.0-6.9 MYA, and the split between the B and G genomes at 2.5-3.5 MYA. The Glu-B1-1 alleles in cultivated wheats fell into two subgroups that diverged 1.4-2.0 MYA, suggesting that emmer was domesticated twice. The D allele sequences were relatively diverse, indicating that the hybridization event that resulted in the hexaploid bread wheats might have occurred more than once.Key words: ancient DNA, HMW glutenin genes, phylogenetic analysis, Triticum, wheat.

1982 ◽  
Vol 47 (03) ◽  
pp. 197-202 ◽  
Author(s):  
Kurt Huber ◽  
Johannes Kirchheimer ◽  
Bernd R Binder

SummaryUrokinase (UK) could be purified to apparent homogeneity starting from crude urine by sequential adsorption and elution of the enzyme to gelatine-Sepharose and agmatine-Sepharose followed by gel filtration on Sephadex G-150. The purified product exhibited characteristics of the high molecular weight urokinase (HMW-UK) but did contain two distinct entities, one of which exhibited a two chain structure as reported for the HMW-UK while the other one exhibited an apparent single chain structure. The purification described is rapid and simple and results in an enzyme with probably no major alterations. Yields are high enough to obtain purified enzymes for characterization of UK from individual donors.


Author(s):  
Shinji Yoshikawa ◽  
Lih-Geeng Chen ◽  
Morio Yoshimura ◽  
Yoshiaki Amakura ◽  
Tsutomu Hatano ◽  
...  

Abstract Our examination of high molecular weight polyphenolic constituents in the leaves of Barringtonia racemosa of the family Lecythidaceae uncovered five previously undescribed ellagitannins. One, barringtin M1 (1), among them was a hydrolysable tannin monomer, while remaining four, barringtins D1 (2), D2 (3), D3 (4) and barricyclin D1 (5), were all dimers. Barricyclin D1 had a first macrocyclic structure formed from casuarictin (6) and tellimagrandin I (7), and the other ellagitannins had structures related to 5. Two additional known phenolics, valoneic acid dilactone (8) and schimawalin A (9), were also isolated from the leaves. These results suggested that the leaves of B. racemosa is a natural resource rich in hydrolysable tannin oligomers.


1944 ◽  
Vol 80 (6) ◽  
pp. 549-559 ◽  
Author(s):  
Gail Lorenz Miller ◽  
Max A. Lauffer ◽  
W. M. Stanley

Crude preparations of PR8 influenza virus, obtained by high-speed centrifugation, contain two electrophoretically distinct components. One of these, present to the extent of 10 to 20 per cent, was identified by electrophoresis, centrifuge, and activity tests, as an impurity similar to or identical with a high molecular weight acidic substance shown by Knight to be elaborated by normal uninfected embryos. The other component, present to the extent of 80 to 90 per cent, appeared to represent the active virus. The virus fraction was separated from the impurity by repeated fractional centrifugation. It then appeared homogeneous in the analytical centrifuge and in the Tiselius apparatus, and possessed an isoelectric point at pH 5.3 as measured by the micro-electrophoresis method.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Madhuri A. Inupakutika ◽  
Soham Sengupta ◽  
Rachel Nechushtai ◽  
Patricia A. Jennings ◽  
Jose’ N. Onuchic ◽  
...  

1961 ◽  
Vol 34 (1) ◽  
pp. 101-118 ◽  
Author(s):  
V. E. Gul

Abstract In connection with the wide distribution of high molecular weight compounds and the great successes in the field of synthesis of these materials, the study of the general principles of the processes of irreversible deformation and rupture of high polymer materials may be included among the important tasks of science and technology. In some cases it is desired to increase to the maximum the strength of the high molecular weight material, as for example in preparing articles from synthetic fibers, rubbers, plastics, etc., while on the other hand in others an increase in strength is undesirable. Thus, for example, food products, into whose composition high molecular weight materials are introduced, should naturally not be too strong. The preparation of reclaim from used rubber articles includes grinding. Here it is attempted to find such a combination of grinding conditions that will proceed with the minimum consumption of energy. In order to have the possibility of increasing or decreasing the strength of the high molecular weight substances, it is necessary to clarify the mechanism of ruptures and to know what is the relation between the forces of reaction between the structural elements of the material and tensile strength.


2000 ◽  
Vol 51 (3) ◽  
pp. 371 ◽  
Author(s):  
H. Nakamura

Variation in the electrophoretic banding patterns of high molecular weight (HMW) glutenin subunits of 274 hexaploid wheat (Triticum aestivum) varieties from China was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Twenty-seven different major glutenin HMW subunits were identified. Each variety contained 3–5 subunits and 29 different glutenin subunit patterns were segregated. Seventeen alleles were identified based on comparison of subunit mobilities with those previously found for hexaploid wheat. Chinese hexaploid wheats exhibited particular allelic variation in glutenin HMW subunit composition and this variation differed from that found in wheats from Japanese and other countries. Average Glu-1 quality scores of 274 Chinese wheat varieties in the present study have been shown to be higher than that of Japanese wheats. Considerable genetic variation in the HMW glutenin subunit compositions of the Chinese wheats was observed in the present study and previously. Alleles from Chinese hexaploid wheat varieties have not been extensively introduced into Japan and other countries. The present data may indicate possible applications of Chinese germplasm in wheat breeding programs. To improve the wheat quality, genetic variation should be attempted through the introduction of genes of Chinese varieties into varieties in Japan and other countries.


Author(s):  
Kirushanthy Kajendran ◽  
Naduviladath Vishvanath Chandrasekharan ◽  
Chamari Madhu Hettiarachchi ◽  
Wijerupage Sandhya Sulochana Wijesundera

<p class="abstract"><strong>Background:</strong> High molecular weight (HMW) glutenin protein plays a crucial role in determining dough viscoelastic properties that determines the quality of wheat flour. The aim of the present study was to isolate, clone and analyze (<em>in silico</em>) the HMW glutenin gene of <em>Triticum aestivum</em> cultivar Dacke.</p><p class="abstract"><strong>Methods:</strong> Primers were designed to amplify a 2445 bp fragment of HMW glutenin gene. Ax type HMW glutenin gene from <em>Triticum aestivum</em> cultivar Dacke was isolated using PCR and it was sequenced by primer walking.  </p><p class="abstract"><strong>Results:</strong> Amplified HMW glutenin gene was designated as HMWGAx. Sequence analysis revealed a complete open reading frame encoding 815 amino acid residues with N- and C terminal non-repetitive domain and a central repetitive domain. The calculated molecular weight of the deduced HMW glutenin protein was ~88 kDa and the number of cysteine residues in the HMWGAx was four, in accordance with other x type HMW glutenin proteins. Phylogenetic analysis revealed 100% homology to the previously studied Ax2* type HMW glutenin gene from cultivar Cheyenne. Predicted secondary structure results showed that it was similar to1Ax1 type of common wheat (<em>Triticum aestivum</em>), having superior flour milling quality.</p><p><strong>Conclusions:</strong> Sequence analysis suggests that HMWGAx protein significantly and positively correlates with the properties of elasticity and extensibility of gluten. </p>


2021 ◽  
Vol 29 ◽  
pp. 111-116
Author(s):  
T. O. Sobko ◽  
G.M. Lisova ◽  
O.M. Blagodarova

Aim. The aim of the study was to investigate allelic variability of high-molecular-weight glutenin loci Glu-A1, Glu-B1, Glu-D1 in Ukrainian winter wheat landraces and obsolete cultivars Triticum aestivum L. Methods. Allelic diversity at the Glu-1 loci were analyzed in 54 collection accessions, including 41 landraces (Krymka, Banatka, Girka, Theyka and others), and 13 first breeding cultivars that were developed in the beginning of the last century by selection from local wheat. Method of SDS-PAG electrophoresis according to Laemmli was used for fractionation of HMW glutenin subunits. Results. A total 11 alleles at the Glu-1 loci were identified, including 3 alleles at the Glu-A1 (a, b, c) and Glu-D1 (a, b, d) loci, and 5 – at the Glu- B1 (c, u, an, aj and subunit 9). Differences in frequencies of glutenin alleles were revealed. Conclusions. In the gene pool of Ukrainian winter bread wheat landraces the most widespread alleles were Glu-A1a (43.3 %), Glu-A1b (40.5 %), Glu-B1c (58 %), Glu-B1u (23 %), Glu-D1d (48.6 %), Glu-D1a (47.2 %). All these alleles (except of the Glu-D1a) are also predominant in the gene pool of modern commercial Ukrainian cultivars. A distinctive feature of Ukrainian landraces are the rare allelic variants of the Glu-B1 locus, which encode the subunits 1By9 and 1By8 (allele Glu-B1aj). Keywords: Triticum aestivum L., winter wheat, landraces, high-molecular-weight glutenin, alleles.


Development ◽  
1990 ◽  
Vol 108 (Supplement) ◽  
pp. 15-20
Author(s):  
R. B. Flavell ◽  
M. O'Dell

Chromosome marking by cytosine methyiation has been examined in two gene systems in wheat – at the loci encoding high molecular weight (HMW) glutenin subunits (seed proteins) and ribosomai RNA. Variation in cytosine methyiation occurs between progeny in highly inbred lines around the HMW glutenin locus. The variation is inherited through meiosis to F1, and F2 generations but occasionally a new variant arises. Specific cytosine residues lose their methyl group in the seed, the organ where the genes are expressed. Within the multigene family of ribosomai RNA genes, several subsets of genes can be defined based upon the cytosine methylation patterns. High activity of a ribosomai RNA gene locus is correlated with loss of methylation at specific cytosine residues, especially in the promoter and upstream regulatory regions. A model is described in which the subset of genes selected to be used are those to which specific regulatory proteins and transcription complexes bind most favourably. Binding of such proteins inhibits cytosine methylation and so marks the subset of genes for expression in subsequent cell generations. Examples are described where new types of RNA genes are introduced via sexual crosses that result in changes to the methylation patterns of the ribosomai RNA genes. The processes determining the changes begin, it is believed, in the fertilised egg.


Sign in / Sign up

Export Citation Format

Share Document