The ABCs of IGF-I isoforms: impact on muscle hypertrophy and implications for repair

2006 ◽  
Vol 31 (6) ◽  
pp. 791-797 ◽  
Author(s):  
Elisabeth R. Barton

Insulin-like growth factor I (IGF-I) plays a critical role in the growth and development of many tissues in the body. It is a key regulator of skeletal muscle development, and continues to enhance the ability for muscle to grow and undergo repair throughout life. Although the focus of research has been on the molecular actions and physiological impact of IGF-I, there has also been a growing undercurrent of studies geared toward the characterization of additional potentially active peptides produced by the igf1 gene. Alternative splicing of the gene results in multiple isoforms that retain the identical sequence for mature IGF-I, but also give rise to divergent C-terminal peptides. The peptides might modulate the actions, stability, or bioavailability of IGF-I, or they might have independent activity. These possibilities have gained the attention of the skeletal muscle field, where novel actions of IGF-I could have significant impact on muscle mass, strength, and repair.

2020 ◽  
Author(s):  
Neha Bhat ◽  
Anand Narayanan ◽  
Mohsen Fathzadeh ◽  
Anup Srivastava ◽  
Arya Mani

ABSTRACTThe advent of human genetics has provided unprecedented opportunities for discovery of novel disease pathways. Mutations in DYRK1B have been associated with metabolic syndrome and sarcopenic obesity in humans, underscoring the critical role of the encoded protein in skeletal muscle development and homeostasis. By the novel creation of Dyrk1b knockout zebrafish models we demonstrate that Dyrk1b kinase activity is critical for specification of the paraxial myoD. Mechanistically, Dyrk1b mediates and amplifies Fgf signaling in the paraxial domain by the transcriptional suppression of its negative feedback inhibitor sprouty1. In the adaxial myoD domain, Dyrk1b amplifies Shh signaling and partially rescues defects caused by its disruption. The investigations of C2C12 terminal differentiation revealed that Dyrk1b also plays a critical role in myofiber fusion. Combined biochemical and proteomic analysis of C2C12 myoblasts undergoing differentiation showed that Dyrk1b kinase activation is induced by shh inhibition, and triggers differentiation by inhibiting mTOR, subsequent upregulation of 4e-bp1 and induction of autophagy. In conclusion, we demonstrate that Dyrk1b plays a critical role in sustaining myocyte specification and differentiation by integrating Fgf, Shh and mTORC1 signaling pathways.


2021 ◽  
Vol 12 ◽  
Author(s):  
Caroline Barbé ◽  
Audrey Loumaye ◽  
Pascale Lause ◽  
Olli Ritvos ◽  
Jean-Paul Thissen

Skeletal muscle, the most abundant tissue in the body, plays vital roles in locomotion and metabolism. Understanding the cellular processes that govern regulation of muscle mass and function represents an essential step in the development of therapeutic strategies for muscular disorders. Myostatin, a member of the TGF-β family, has been identified as a negative regulator of muscle development. Indeed, its inhibition induces an extensive skeletal muscle hypertrophy requiring the activation of Smad 1/5/8 and the Insulin/IGF-I signaling pathway, but whether other molecular mechanisms are involved in this process remains to be determined. Using transcriptomic data from various Myostatin inhibition models, we identified Pak1 as a potential mediator of Myostatin action on skeletal muscle mass. Our results show that muscle PAK1 levels are systematically increased in response to Myostatin inhibition, parallel to skeletal muscle mass, regardless of the Myostatin inhibition model. Using Pak1 knockout mice, we investigated the role of Pak1 in the skeletal muscle hypertrophy induced by different approaches of Myostatin inhibition. Our findings show that Pak1 deletion does not impede the skeletal muscle hypertrophy magnitude in response to Myostatin inhibition. Therefore, Pak1 is permissive for the skeletal muscle mass increase caused by Myostatin inhibition.


2006 ◽  
Vol 100 (6) ◽  
pp. 1778-1784 ◽  
Author(s):  
Elisabeth R. Barton

Insulin-like growth factor I (IGF-I) is a critical protein for skeletal muscle development and regeneration. Its ability to promote skeletal muscle hypertrophy has been demonstrated by several methods. Alternative splicing of the Igf-1 gene does not affect the mature IGF-I protein but does produce different E peptide extensions, which have been reported to modify the potency of IGF-I. Viral-mediated delivery of murine IGF-IA and IGF-IB into skeletal muscle of 2-wk-old and 6-mo-old mice was utilized to compare the effects of the isoforms on muscle mass. In young mice, tissue content of IGF-I protein was significantly higher in rAAV-treated muscles than control muscles at 1, 2, and 4 mo postinjection. Viral injection of IGF-IB produced two- to sevenfold more IGF-I than rAAVIGF-IA. Hypertrophy was observed 2 and 4 mo postinjection, where both rAAVIGF-IA and rAAVIGF-IB were equally effective in increasing muscle mass. These results suggest that there is a threshold of IGF-I production necessary to promote muscle hypertrophy in young growing animals regardless of isoform. In 6-mo-old animals, only rAAVIGF-IA produced significant increases in muscle size, even though increased IGF-I content was observed after injection of both isoforms. Therefore, the ability for IGF-IB to promote muscle hypertrophy is only effective in growing animals, suggesting that the bioavailability of this isoform or its receptor affinity diminishes with age.


2015 ◽  
Vol 14 (2) ◽  
pp. 4448-4460 ◽  
Author(s):  
T.S. Xu ◽  
L.H. Gu ◽  
Y. Sun ◽  
X.H. Zhang ◽  
B.G. Ye ◽  
...  

Author(s):  
De-Li Shi ◽  
Raphaëlle Grifone

Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.


2020 ◽  
Vol 134 (17) ◽  
pp. 2381-2398
Author(s):  
Miao Chen ◽  
Caoyu Ji ◽  
Qingchen Yang ◽  
Shuya Gao ◽  
Yue Peng ◽  
...  

Abstract Skeletal muscle is responsible for the majority of glucose disposal in the body. Insulin resistance in the skeletal muscle accounts for 85–90% of the impairment of total glucose disposal in patients with type 2 diabetes (T2D). However, the mechanism remains controversial. The present study aims to investigate whether AKT2 deficiency causes deficits in skeletal muscle development and metabolism, we analyzed the expression of molecules related to skeletal muscle development, glucose uptake and metabolism in mice of 3- and 8-months old. We found that AMP-activated protein kinase (AMPK) phosphorylation and myocyte enhancer factor 2 (MEF2) A (MEF2A) expression were down-regulated in AKT2 knockout (KO) mice, which can be inverted by AMPK activation. We also observed reduced mitochondrial DNA (mtDNA) abundance and reduced expression of genes involved in mitochondrial biogenesis in the skeletal muscle of AKT2 KO mice, which was prevented by AMPK activation. Moreover, AKT2 KO mice exhibited impaired AMPK signaling in response to insulin stimulation compared with WT mice. Our study establishes a new and important function of AKT2 in regulating skeletal muscle development and glucose metabolism via AMPK-dependent signaling.


Sign in / Sign up

Export Citation Format

Share Document