Manipulating training intensity and volume in already well-trained rats: effect on skeletal muscle oxidative and glycolytic enzymes and buffering capacity

2007 ◽  
Vol 32 (3) ◽  
pp. 434-442 ◽  
Author(s):  
Paul B. Laursen ◽  
Susan A. Marsh ◽  
David G. Jenkins ◽  
Jeff S. Coombes

Well-trained endurance athletes undergo periods of high-intensity interval training (HIT) or high-volume training (HVT) to improve exercise performance, but little is known about the mechanistic changes that occur during this time. The purpose of this study was to examine the influence of HIT and HVT on the activities of citrate synthase (CS) and phosphofructokinase (PFK), and on intramuscular buffering capacity (βm) in already well-trained rats. At 4 weeks of age, Wistar rats were divided into sedentary (SED; n = 18) and exercise training groups (n = 38). Following a 10 week preliminary training program, trained rats were divided randomly into 3 further groups that completed 4 additional weeks of continued endurance (CON, n = 14), high-intensity training (HIT, n = 12), or high-volume training (HVT, n = 12). Soleus (SOL), red and white gastrocnemius (RG and WG), and red and white vastus (RV and WV) muscles were removed 24–48 h after a final run-to-fatigue performance test (30 m·min–1; 25% grade) to determine the activities of CS, PFK, and βm. No differences in run time to exhaustion were found between the groups. However the HIT group possessed CS and PFK activities and βm in WV muscle that were 60%, 24%, and 10% higher, respectively (all p < 0.05), compared with the HVT group; differences were not found between the HIT and CON groups. Although no differences in run performance were found, HIT compared with HVT in already well-trained rats resulted in significantly higher oxidative and glycolytic capacities of fast-contracting fibres. No differences were shown in fast-contracting muscle between HIT and CON.

2014 ◽  
Vol 39 (3) ◽  
pp. 409-412 ◽  
Author(s):  
Jenna B. Gillen ◽  
Martin J. Gibala

Growing research suggests that high-intensity interval training (HIIT) is a time-efficient exercise strategy to improve cardiorespiratory and metabolic health. “All out” HIIT models such as Wingate-type exercise are particularly effective, but this type of training may not be safe, tolerable or practical for many individuals. Recent studies, however, have revealed the potential for other models of HIIT, which may be more feasible but are still time-efficient, to stimulate adaptations similar to more demanding low-volume HIIT models and high-volume endurance-type training. As little as 3 HIIT sessions per week, involving ≤10 min of intense exercise within a time commitment of ≤30 min per session, including warm-up, recovery between intervals and cool down, has been shown to improve aerobic capacity, skeletal muscle oxidative capacity, exercise tolerance and markers of disease risk after only a few weeks in both healthy individuals and people with cardiometabolic disorders. Additional research is warranted, as studies conducted have been relatively short-term, with a limited number of measurements performed on small groups of subjects. However, given that “lack of time” remains one of the most commonly cited barriers to regular exercise participation, low-volume HIIT is a time-efficient exercise strategy that warrants consideration by health practitioners and fitness professionals.


2020 ◽  
Vol 120 (12) ◽  
pp. 2705-2713
Author(s):  
Peter Düking ◽  
Hans-Christer Holmberg ◽  
Philipp Kunz ◽  
Robert Leppich ◽  
Billy Sperlich

Abstract Purpose Pronounced differences in individual physiological adaptation may occur following various training mesocycles in runners. Here we aimed to assess the individual changes in performance and physiological adaptation of recreational runners performing mesocycles with different intensity, duration and frequency. Methods Employing a randomized cross-over design, the intra-individual physiological responses [i.e., peak ($${\dot{\text V}}{\text O}_{2 {\rm peak}}$$ V ˙ O 2 peak ) and submaximal ($${\dot{\text V}}{\text O}_{2 {\rm submax}}$$ V ˙ O 2 submax ) oxygen uptake, velocity at lactate thresholds (V2, V4)] and performance (time-to-exhaustion (TTE)) of 13 recreational runners who performed three 3-week sessions of high-intensity interval training (HIIT), high-volume low-intensity training (HVLIT) or more but shorter sessions of HVLIT (high-frequency training; HFT) were assessed. Results $${\dot{\text V}}{\text O}_{2 {\rm submax}}$$ V ˙ O 2 submax , V2, V4 and TTE were not altered by HIIT, HVLIT or HFT (p > 0.05). $${\dot{\text V}}{\text O}_{2 {\rm peak}}$$ V ˙ O 2 peak improved to the same extent following HVLIT (p = 0.045) and HFT (p = 0.02). The number of moderately negative responders was higher following HIIT (15.4%); and HFT (15.4%) than HVLIT (7.6%). The number of very positive responders was higher following HVLIT (38.5%) than HFT (23%) or HIIT (7.7%). 46% of the runners responded positively to two mesocycles, while 23% did not respond to any. Conclusion On a group level, none of the interventions altered $${\dot{\text V}}{\text O}_{2 {\rm submax}}$$ V ˙ O 2 submax , V2, V4 or TTE, while HVLIT and HFT improved $${\dot{\text V}}{\text O}_{2 {\rm peak}}$$ V ˙ O 2 peak . The mean adaptation index indicated similar numbers of positive, negative and non-responders to HIIT, HVLIT and HFT, but more very positive responders to HVLIT than HFT or HIIT. 46% responded positively to two mesocycles, while 23% did not respond to any. These findings indicate that the magnitude of responses to HIIT, HVLIT and HFT is highly individual and no pattern was apparent.


2010 ◽  
Vol 35 (3) ◽  
pp. 350-357 ◽  
Author(s):  
Brendon J. Gurd ◽  
Christopher G.R. Perry ◽  
George J.F. Heigenhauser ◽  
Lawrence L. Spriet ◽  
Arend Bonen

The effects of training on silent mating-type information regulator 2 homolog 1 (SIRT1) activity and protein in relationship to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitochondrial content were determined in human skeletal muscle. Six weeks of high-intensity interval training (∼1 h of 10 × 4 min intervals at 90% peak oxygen consumption separated by 2 min rest, 3 days per week) increased maximal activities of mitochondrial enzymes in skeletal muscle by 28% to 36% (citrate synthase, β-hydroxyacyl-coenzyme A dehydrogenase, and cytochrome c oxidase subunit IV) and PGC-1α protein (16%) when measured 4 days after training. Interestingly, total muscle SIRT1 activity (31%) and activity per SIRT1 protein (58%) increased despite decreased SIRT1 protein (20%). The present data demonstrate that exercise-induced mitochondrial biogenesis is accompanied by elevated SIRT1 activity in human skeletal muscle.


2017 ◽  
Vol 02 (01) ◽  
pp. E20-E27 ◽  
Author(s):  
Sverre Valstad ◽  
Erna von Heimburg ◽  
Boye Welde ◽  
Roland van den Tillaar

AbstractThis study compared the effects of long (4×4 min) and short intervals (4×8×20 s) of high-intensity interval exercise bouts (HIIT) on running performance, physiological and perceptual responses, and excess postexercise oxygen consumption (EPOC). Twelve healthy college students (8 men, 4 women; mean age=22±2 years) performed long (90–95% of peak heart rate) and short intervals (maximal intensity) of high-intensity training (running on a non-motorized treadmill) with the same total duration on separate days. The total volume of consumed oxygen during recovery was the same in both cases (P=0.21), whereas the short intervals of high-intensity training were performed at a faster mean running velocity (3.5±0.18 vs. 2.95±0.07 m/s) and at a lower RPEbreath compared with the long intervals of high-intensity training. The blood lactate concentration also tended to be lower during the short intervals of high-intensity training, indicating that short-interval training was perceived to be easier than long-interval training, even though the cardiovascular and metabolic responses are similar. Furthermore, EPOC lasted significantly longer (83.4±3.2 vs. 61.3±27.9 min, P=0.016) and tended to be higher (8.02±4.22=vs. 5.70±3.75 L O2, P=0.053) after short intervals than after long intervals of training.


2000 ◽  
Vol 14 (2) ◽  
pp. 138-156 ◽  
Author(s):  
David T. Martin ◽  
Mark B. Andersen ◽  
Ward Gates

This study examined whether the Profile of Mood States questionnaire (POMS) is a useful tool for monitoring training stress in cycling athletes. Participants (n = 11) completed the POMS weekly during six weeks of high-intensity interval cycling and a one-week taper. Cycling performance improved over the first three weeks of training, plateaued during Weeks 4 and 5, decreased slightly following Week 6, and then significantly increased during the one-week taper. Neither the high-intensity interval training nor the one-week taper significantly affected total mood or specific mood states. POMS data from two cyclists who did not show improved performance capabilities during the taper (overtraining) were not distinctly unique when compared to cyclists who did improve. Also, one cyclist, who on some days had the highest total mood disturbance, responded well to the taper and produced his best personal effort during this time period. These findings raise questions about the usefulness of POMS to distinguish, at an individual level, between periods of productive and counterproductive high-intensity training.


2008 ◽  
Vol 295 (6) ◽  
pp. R1991-R1998 ◽  
Author(s):  
David Bishop ◽  
Johann Edge ◽  
Claire Thomas ◽  
Jacques Mercier

The purpose of this study was to investigate the effects of high-intensity interval training (3 days/wk for 5 wk), provoking large changes in muscle lactate and pH, on changes in intracellular buffer capacity (βmin vitro), monocarboxylate transporters (MCTs), and the decrease in muscle lactate and hydrogen ions (H+) after exercise in women. Before and after training, biopsies of the vastus lateralis were obtained at rest and immediately after and 60 s after 45 s of exercise at 190% of maximal O2 uptake. Muscle samples were analyzed for ATP, phosphocreatine (PCr), lactate, and H+; MCT1 and MCT4 relative abundance and βmin vitro were also determined in resting muscle only. Training provoked a large decrease in postexercise muscle pH (pH 6.81). After training, there was a significant decrease in βmin vitro (−11%) and no significant change in relative abundance of MCT1 (96 ± 12%) or MCT4 (120 ± 21%). During the 60-s recovery after exercise, training was associated with no change in the decrease in muscle lactate, a significantly smaller decrease in muscle H+, and increased PCr resynthesis. These results suggest that increases in βmin vitro and MCT relative abundance are not linked to the degree of muscle lactate and H+ accumulation during training. Furthermore, training that is very intense may actually lead to decreases in βmin vitro. The smaller postexercise decrease in muscle H+ after training is a further novel finding and suggests that training that results in a decrease in H+ accumulation and an increase in PCr resynthesis can actually reduce the decrease in muscle H+ during the recovery from supramaximal exercise.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kirstie Jodie Turner ◽  
David Bruce Pyne ◽  
Julien D. Périard ◽  
Anthony John Rice

Purpose: The effects of two different high-intensity training methods on 2,000 m rowing ergometer performance were examined in a feasibility study of 24 national-level rowers aged 18–27 years (17 males, 2,000 m ergometer time trial 6:21.7 ± 0:14.6 (min:s) and seven females, 2,000 m ergometer 7:20.3 ± 0:12.1. Habitual training for all participants was ~12–16 h per week).Methods: 16 high-intensity ergometer sessions were completed across two 3-week periods. Participants were allocated into two groups according to baseline 2,000 m time. High-intensity interval session-sprint-interval session (HIIT-SIT) completed eight HIIT (8 × 2.5 min intervals; 95% of 2,000 m wattage) followed by eight SIT (three sets of 7 × 30 s intervals; maximum effort). SIT-HIIT completed eight SIT sessions followed by eight HIIT sessions. Both a 2,000-m time trial and a progressive incremental test finishing with 4 min “all-out” performance were completed before and after each 3-week phase.Results: Both groups showed similar improvements in 2,000 m time and 4 min “all-out” distance after the first 3 weeks (2,000 m time: HIIT-SIT: −2.0 ± 0.6%, mean ± 90% CL, p = 0.01; SIT-HIIT: −1.5 ± 0.3%, p = 0.01) with no significant difference between groups. HIIT-SIT demonstrated the greatest improvements in submaximal heart rate (HR) during the progressive incremental test with eight sessions of HIIT showing a greater reduction in submaximal HR than eight sessions of SIT. The net improvement of 16 high-intensity sessions on 2,000 m time was −2.5% for HIIT-SIT (−10.6 ± 3.9 s, p = 0.01) and − 2.2% for SIT-HIIT (−9.0 ± 5.7 s, p = 0.01) and for 4 min “all-out” performance was 3.1% for HIIT-SIT (36 ± 25 m, p = 0.01) and 2.8% for SIT-HIIT (33 ± 27 m, p = 0.01).Conclusion: Eight sessions of high-intensity training can improve 2,000 m ergometer rowing performance in national-level rowers, with a further eight sessions producing minimal additional improvement. The method of high-intensity training appears less important than the dose.


2017 ◽  
Vol 12 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Jaime Fernandez-Fernandez ◽  
David Sanz ◽  
Jose Manuel Sarabia ◽  
Manuel Moya

Purpose:To compare the effects of combining high-intensity training (HIT) and sport-specific drill training (MT) versus sportspecific drill training alone (DT) on fitness performance characteristics in young tennis players.Methods:Twenty young tennis players (14.8 ± 0.1 y) were assigned to either DT (n = 10) or MT (n = 10) for 8 wk. Tennis drills consisted of two 16- to 22-min on-court exercise sessions separated by 3 min of passive rest, while MT consisted of 1 sport-specific DT session and 1 HIT session, using 16–22 min of runs at intensities (90–95%) related to the velocity obtained in the 30–15 Intermittent Fitness Test (VIFT) separated by 3 min of passive rest. Pre- and posttests included peak oxygen uptake (VO2peak), VIFT, speed (20 m, with 5- and 10-m splits), 505 Agility Test, and countermovement jump (CMJ).Results:There were significant improvements after the training period in VO2peak (DT 2.4%, ES = moderate; MT 4.2%, ES = large) and VIFT (DT 2.2%, ES = small; MT 6.3%, ES = large) for both DT and MT, with no differences between training protocols. Results also showed a large increase in the 505 Agility Test after MT, while no changes were reported in the other tests (sprint and CMJ), either for MT or DT.Conclusions:Even though both training programs resulted in significant improvements in aerobic performance, a mixed program combining tennis drills and runs based on the VIFT led to greater gains and should be considered the preferred training method for improving aerobic power in young athletes.


Sign in / Sign up

Export Citation Format

Share Document