Seated Versus Standing Cycling in Competitive Road Cyclists: Uphill Climbing and Maximal Oxygen Uptake

1996 ◽  
Vol 21 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Hirofumi Tanaka ◽  
David R. Bassett Jr. ◽  
Shane K. Best ◽  
Kenny R. Baker Jr.

Seven competitive road cyclists (M ± SE = 23.7 ± 1.5 yr, 70.5 ± 1.7 kg) participated to determine the effects of cycling body position on physiological responses during uphill cycling and maximal oxygen uptake [Formula: see text]. There was no significant difference in [Formula: see text] between seated and standing positions on a cycle ergometer (66.4 ± 1.6 vs. 66.4 ± 1.7 ml∙kg−1∙min−1). When the subjects rode their own bicycle on a treadmill, oxygen uptake and heart rate were significantly (p < 0.05) higher during standing when subjects bicycled at 20.0 km∙h−1 (4% grade), but no difference was observed when riding at 12.3 km−1 (10% grade). Leg RPE was significantly (p < 0.05) lower for standing position up a 10% grade. The results suggest that the standing position is less economical during moderate hill climbing, but during steep hill climbing, it results in a decreased sensation of effort in the legs. Key words: bicycling, heart rate, rating of perceived exertion

2015 ◽  
Vol 10 (2) ◽  
pp. 172-177 ◽  
Author(s):  
James S. Hogg ◽  
James G. Hopker ◽  
Alexis R. Mauger

Purpose:The novel self-paced maximal-oxygen-uptake (VO2max) test (SPV) may be a more suitable alternative to traditional maximal tests for elite athletes due to the ability to self-regulate pace. This study aimed to examine whether the SPV can be administered on a motorized treadmill.Methods:Fourteen highly trained male distance runners performed a standard graded exercise test (GXT), an incline-based SPV (SPVincline), and a speed-based SPV (SPVspeed). The GXT included a plateau-verification stage. Both SPV protocols included 5 × 2-min stages (and a plateau-verification stage) and allowed for self-pacing based on fixed increments of rating of perceived exertion: 11, 13, 15, 17, and 20. The participants varied their speed and incline on the treadmill by moving between different marked zones in which the tester would then adjust the intensity.Results:There was no significant difference (P = .319, ES = 0.21) in the VO2max achieved in the SPVspeed (67.6 ± 3.6 mL · kg−1 · min−1, 95%CI = 65.6–69.7 mL · kg−1 · min−1) compared with that achieved in the GXT (68.6 ± 6.0 mL · kg−1 · min−1, 95%CI = 65.1–72.1 mL · kg−1 · min−1). Participants achieved a significantly higher VO2max in the SPVincline (70.6 ± 4.3 mL · kg−1 · min−1, 95%CI = 68.1–73.0 mL · kg−1 · min−1) than in either the GXT (P = .027, ES = 0.39) or SPVspeed (P = .001, ES = 0.76).Conclusions:The SPVspeed protocol produces VO2max values similar to those obtained in the GXT and may represent a more appropriate and athlete-friendly test that is more oriented toward the variable speed found in competitive sport.


2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


2015 ◽  
Vol 10 (8) ◽  
pp. 1023-1028 ◽  
Author(s):  
Vincenzo Manzi ◽  
Antonio Bovenzi ◽  
Carlo Castagna ◽  
Paola Sinibaldi Salimei ◽  
Maurizio Volterrani ◽  
...  

Purpose:To assess the distribution of exercise intensity in long-distance recreational athletes (LDRs) preparing for a marathon and to test the hypothesis that individual perception of effort could provide training responses similar to those provided by standardized training methodologies.Methods:Seven LDRs (age 36.5 ± 3.8 y) were followed during a 5-mo training period culminating with a city marathon. Heart rate at 2.0 and 4.0 mmol/L and maximal heart rate were used to establish 3 intensity training zones. Internal training load (TL) was assessed by training zones and TRIMPi methods. These were compared with the session-rating-of-perceived-exertion (RPE) method.Results:Total time spent in zone 1 was higher than in zones 2 and 3 (76.3% ± 6.4%, 17.3% ± 5.8%, and 6.3% ± 0.9%, respectively; P = .000 for both, ES = 0.98, ES = 0.99). TL quantified by session-RPE provided the same result. The comparison between session-RPE and training-zones-based methods showed no significant difference at the lowest intensity (P = .07, ES = 0.25). A significant correlation was observed between TL RPE and TL TRIMPi at both individual and group levels (r = .79, P < .001). There was a significant correlation between total time spent in zone 1 and the improvement at the running speed of 2 mmol/L (r = .88, P < .001). A negative correlation was found between running speed at 2 mmol/L and the time needed to complete the marathon (r = –.83, P < .001).Conclusions:These findings suggest that in recreational LDRs most of the training time is spent at low intensity and that this is associated with improved performances. Session-RPE is an easy-to-use training method that provides responses similar to those obtained with standardized training methodologies.


1996 ◽  
Vol 82 (2) ◽  
pp. 419-424 ◽  
Author(s):  
Antonios K. Travlos ◽  
Daniel Q. Marisi

This study was conducted to investigate the influence of fitness level and gradually increased amounts of exercise on individuals' ratings of perceived exertion (RPE). 20 men served as paid subjects. They were divided into groups of high (>56 ml/kg/min.) and low fitness (<46 ml/kg/min.) according to their maximal oxygen uptake (VO2 max). Participants were required to pedal on a cycle ergometer at a progressively increased workload (every 10 min.) corresponding to 40, 50, 60, 70, and 80% of individual VO2 max values. Heart rates, RPE, and core temperatures were recorded every 5th minute after the initiation of exercising at a specific workload. Analysis indicated that, when controlling for VO2 max values, elevations of heart rate and core temperature were not affected by fitness. However, highly fit individuals perceived themselves under less exertion than did the group low in fitness. Correlations showed that, taking into consideration fitness, there is a stronger relationship between RPE and heart rate and RPE and core temperature for the highly fit individuals than for the less fit.


2020 ◽  
Vol 12 (2) ◽  
pp. 92
Author(s):  
Pongsakorn Chaisurin ◽  
Jakkrit Klapajone ◽  
Pongson Yaicharoen

Objectives: Our objective was to investigate physiological effects of three types of sounds (synchronous, non-synchronous and white noise) on heart rate, rating of perceived exertion (RPE) and satisfactory level during aerobic exercise.Study design: Pilot cross-over study, single-blindSetting: SuanDok fitness center, Faculty of Medicine, Chiang Mai University.Subjects: Fifteen healthy individuals, aged 18-40 years (mean ± SD = 30.2 ± 4.0) with no prior history of pain, musculoskeletal disorders, cardiopulmonary diseases, neurological diseases and hearing impairment.Methods: Subjects who were asked to exercise to exhaustion (with target heart rate in an aerobic zone) on elliptical machines were randomly assigned to listen to 1) a music with beats matching the exercise cadence; synchronous music or 2) a music with variable beats not matching the cadence; asynchronous music or 3) a control sound using white noise in each of 3 exercise sessions. Heart rate and Borg’s Ratings of Perceived Exertion (RPE) were measured at 10 and 20 minutes after starting the exercise. Satisfactory level was also assessed.Results: All fifteen participants with an average age of 30.2 ± 4.0 years completed the exercise protocol. The synchronous music session gave a significant reduction in heart rate at 10 and 20 minutes when compared with asynchronous and white noise sessions. There was no significant difference of heart rate between asynchronous music and white noise sessions at 10 and 20 minutes. Regarding Borg’s RPE, the synchronous session showed significantly lower RPE at 10 and 20 minutes when compared with asynchronous music and white noise sessions. There was no significant difference between RPE in asynchronous music and white noise session. Overall satisfaction using numeric rating scale of 0-10 revealed average satisfactory levels for synchronous music, asynchronous music and white noise of 8.27 ± 1.16, 5.2 ± 2.65 and 2.73 ± 1.62 respectively. Conclusion: Synchronous music had a positive impact on an exercise as it could reduce heart rate and perceived exertion during the exercise. A consistent pace could be auditorily stimulated by coupling exercise cadence on the elliptical machine to the synchronous music tempo, leading to better auditory-motor synchronization.Keywords: synchronous music, exercise, RPE, tempo, elliptical machine 


2013 ◽  
Vol 38 (12) ◽  
pp. 1211-1216 ◽  
Author(s):  
Alexis R. Mauger ◽  
Alan J. Metcalfe ◽  
Lee Taylor ◽  
Paul C. Castle

The novel self-paced, cycle-based maximal oxygen uptake (V̇O2max) test (SPV) has been shown to produce higher V̇O2max values than standard graded exercise test (GXT) protocols. This study sought to ascertain whether these observations would also be apparent in a self-paced, treadmill-based test design. Fourteen trained male runners performed a standard GXT on a motorised treadmill and a self-paced V̇O2max test on a nonmotorised treadmill in a counter-balanced design. The GXT included a plateau verification and was designed to last between 8 and 12 min. The self-paced test included 5 × 2 min stages and allowed participants to set their own running speed based on fixed increments in rating of perceived exertion. Significantly higher V̇O2max values (t[13] = 3.71, p = 0.003) were achieved in the self-paced test (64.4 ± 7.3 mL·kg−1·min−1) compared with the GXT (61.3 ± 7.3 mL·kg−1·min−1), and 13 of the 14 participants achieved the same or higher V̇O2max values in the self-paced test. Higher (p = 0.01) maximum heart rates were observed in the GXT (191 ± 10 beats·min−1 vs. 187 ± 7 beats·min−1), but no differences were observed in any other recorded variables. The self-paced V̇O2max test may provide a more valid means of measuring V̇O2max than the GXT and suggests that a V̇O2 plateau during a GXT does not always signify achievement of a definitive V̇O2max. These results provide further support that self-paced V̇O2max testing produces higher values for maximal oxygen uptake.


Author(s):  
Benoit Capostagno ◽  
Andrew Bosch

This study examined the differences in fat and carbohydrate oxidation during running and cycling at the same relative exercise intensities, with intensity determined in a number of ways. Specifically, exercise intensity was expressed as a percentage of maximum workload (WLmax), maximum oxygen uptake (%VO2max), and maximum heart rate (%HRmax) and as rating of perceived exertion (RPE). Ten male triathletes performed maximal running and cycling trials and subsequently exercised at 60%, 65%, 70%, 75%, and 80% of their WLmax. VO2, HR, RPE, and plasma lactate concentrations were measured during all submaximal trials. Fat and carbohydrate oxidation were calculated from VO2 and VCO2 data. A 2-way ANOVA for repeated measures was used to determine any statistically significant differences between exercise modes. Fat oxidation was shown to be significantly higher in running than in cycling at the same relative intensities expressed as either %WLmax or %VO2max. Neither were there any significant differences in VO2max and HRmax between the 2 exercise modes, nor in submaximal VO2 or RPE between the exercise modes at the same %WLmax. However, heart rate and plasma lactate concentrations were significantly higher when cycling at 60% and 65% and 65–80%WLmax, respectively. In conclusion, fat oxidation is significantly higher during running than during cycling at the same relative intensity expressed as either %WLmax or %VO2max.


Sign in / Sign up

Export Citation Format

Share Document