A study on flow past a suspended bluff object in an open channel

2001 ◽  
Vol 28 (4) ◽  
pp. 547-554 ◽  
Author(s):  
F N Krampa-Morlu ◽  
R Balachandar

Detailed velocity and erosion measurements in the near wake of a flat plate with a gap between the plate and the channel bed in an open channel are presented. A "wall jet" like flow (confined to the wall region) is observed to interact with the wake flow behind the body. Two axial stations downstream of the body were chosen to obtain the velocity profiles in the near wake region. The span-wise velocity profiles across the wake at two distances from the channel bottom were also obtained. This yielded information in the development of the "wall jet" like flow and also provided some sense of the velocity components in the near wake. At mid-section of the gap, the streamwise mean velocity attains its peak value at one body width. The velocity measurements across the wake exhibit the cause of erosion. Erosion measurements were simulated on an erodible sand bed of D50 = 0.59 mm grain size. The erosion patterns obtained show symmetry about the centerline of the plate. A ripple-like pattern was observed with deeper scour holes generated towards the edge of the wake. Flow separations from the lower corners and the sides of the plate account for this typical nature of the erosion pattern.Key words: velocity profile, local scour, wake flow, wall jet flow.

1969 ◽  
Vol 35 (2) ◽  
pp. 225-241 ◽  
Author(s):  
M. A. Badri Narayanan ◽  
V. Ramjee

Experiments on reverse transition were conducted in two-dimensional accelerated incompressible turbulent boundary layers. Mean velocity profiles, longitudinal velocity fluctuations $\tilde{u}^{\prime}(=(\overline{u^{\prime 2}})^{\frac{1}{2}})$ and the wall-shearing stress (TW) were measured. The mean velocity profiles show that the wall region adjusts itself to laminar conditions earlier than the outer region. During the reverse transition process, increases in the shape parameter (H) are accompanied by a decrease in the skin friction coefficient (Cf). Profiles of turbulent intensity (u’2) exhibit near similarity in the turbulence decay region. The breakdown of the law of the wall is characterized by the parameter \[ \Delta_p (=\nu[dP/dx]/\rho U^{*3}) = - 0.02, \] where U* is the friction velocity. Downstream of this region the decay of $\tilde{u}^{\prime}$ fluctuations occurred when the momentum thickness Reynolds number (R) decreased roughly below 400.


Author(s):  
Dongmei Zhou ◽  
Kenneth S. Ball

This paper has two objectives, (1) to examine the effects of spatial resolution, (2) to examine the effects of computational box size, upon turbulence statistics and the amount of drag reduction with and without the control scheme of wall oscillation. Direct numerical simulation (DNS) of the fully developed turbulent channel flow was performed at Reynolds number of 200 based on the wall-shear velocity and the channel half-width by using spectral methods. For the first objective, four different grids were applied to the same computational domain and the biggest impact was observed on the logarithmic law of mean velocity profiles and on the amount of drag reduction with 28.3% for the coarsest mesh and 35.4% for the finest mesh. Other turbulence features such as RMS velocity fluctuations, RMS vorticity fluctuations, and bursting events were either overpredicted or underpredicted through coarse grids. For the second objective, two different minimal channels and one natural full channel were studied and 3% drag reduction difference was observed between the smallest minimal channel of 39.1% and the natural full channel of 36.2%. In the near-wall region, however, the minimal channel flow did not exhibit significant difference in the mean velocity profiles and other lower-order statistics. Finally, from this systematical study, it showed that the accuracy of DNS depends more on the spanwise resolution, and it also confirmed that a minimal channel model is able to catch key structures of turbulence in the near-wall region but is much less expensive.


2001 ◽  
Vol 123 (2) ◽  
pp. 394-400 ◽  
Author(s):  
Ram Balachandar ◽  
D. Blakely ◽  
M. Tachie ◽  
G. Putz

An experimental study was undertaken to investigate the characteristics of turbulent boundary layers developing on smooth flat plate in an open channel flow at moderately high Froude numbers (0.25<Fr<1.1) and low momentum thickness Reynolds numbers 800<Reθ<2900. The low range of Reynolds numbers and the high Froude number range make the study important, as most other studies of this type have been conducted at high Reynolds numbers and lower Froude numbers (∼0.1). Velocity measurements were carried out using a laser-Doppler anemometer equipped with a beam expansion device to enable measurements close to the wall region. The shear velocities were computed using the near-wall measurements in the viscous subregion. The variables of interest include the longitudinal mean velocity, the turbulence intensity, and the velocity skewness and flatness distributions across the boundary layer. The applicability of a constant Coles’ wake parameter (Π=0.55) to open channel flows has been discounted. The effect of the Froude number on the above parameters was also examined.


Author(s):  
Amber Donaldson ◽  
John C. Vaccaro ◽  
David M. Rooney

Abstract An experimental wind tunnel study was performed to assess the effect of aspect ratio and rotational speed of circular cylinders of varying diameter on the flow patterns behind the cylinders in the presence of a uniform upstream crossflow. Six circular cylinders of constant length but different diameters, producing aspect ratios 6 ≤ AR ≤ 32 were examined at a single upstream velocity such that the Reynolds number varied between 1920 ≤ Re ≤ 10240. Rotational speeds from stationary up to 3600 rpm were applied to the cylinders, so that the maximum relative velocity α = πfD/U∞ = 0.80. Mean velocity profiles were measured three diameters downstream of the cylinder axis at 6 equidistant locations, and PSD power spectral density were generated for 26 equidistant locations along the cylinder, to create a comprehensive record of spanwise variations under all rotational conditions. For the highest aspect ratio tested, the wake velocity profiles were independent of rotational speed at all spanwise locations, whereas at lower aspect ratios, the maximum velocity defect diminished with increasing rotational speed along most of the span and became asymmetric near the free end. Two distinct shedding cells were found only for a cylinder with an aspect ratio of twelve at three relative spin rates of 0.067, 0.27, and 0.4. In cases where only a single cell existed, increased rotational speed produced a higher vortex shedding frequency on a given aspect ratio cylinder.


1997 ◽  
Vol 119 (3) ◽  
pp. 451-459 ◽  
Author(s):  
D. L. Quintana ◽  
M. Amitay ◽  
A. Ortega ◽  
I. J. Wygnanski

The mean and fluctuating characteristics of a plane, unsteady, laminar, wall jet were investigated experimentally for a constant wall-temperature boundary condition. Temperature and streamwise velocity profiles, including the downstream development of the thermal and hydrodynamic boundary layer thicknesses, were obtained through simultaneous hot and cold wire measurements in air. Even at relatively low temperature differences, heating or cooling of a floor surface sufficiently altered the mean velocity profile in the inner, near-wall region to produce significant effects on the jet stability. Selective forcing of the flow at the most amplified frequencies produced profound effects on the temperature and velocity fields and hence the time-averaged heat transfer and shear stress. Large amplitude excitation of the flow (up to 2 percent of the velocity measured at the jet exit plane) at a high frequency resulted in a reduction in the maximum skin friction by as much as 65 percent, with an increase in the maximum wall heat flux as high as 45 percent. The skin friction and wall heat flux were much less susceptible to low-frequency excitation.


1974 ◽  
Vol 64 (3) ◽  
pp. 529-564 ◽  
Author(s):  
J. Counihan ◽  
J. C. R. Hunt ◽  
P. S. Jackson

By making simple assumptions, an analytical theory is deduced for the mean velocity behind a two-dimensional obstacle (of heighth) placed on a rigid plane over which flows a turbulent boundary layer (of thickness δ). It is assumed thath[Gt ] δ, and that the wake can be divided into three regions. The velocity deficit −uis greatest in the two regions in which the change in shear stress is important, a wall region (W) close to the wall and a mixing region (M) spreading from the top of the obstacle. Above these is the external region (E) in which the velocity field is an inviscid perturbation on the incident boundary-layer velocity, which is taken to have a power-law profileU(y) =U∞(y−y1)n/δn, wheren[Gt ] 1. In (M), assuming that an eddy viscosity (=KhU(h)) can be defined for the perturbed flow in terms of the incident boundary-layer flow and that the velocity is self-preserving, it is found thatu(x,y) has the form$\frac{u}{U(h)} = \frac{ C }{Kh^2U^2(h)} \frac{f(n)}{x/h},\;\;\;\; {\rm where}\;\;\;\; \eta = (y/h)/[Kx/h]^{1/(n+2)}$, and the constant which defines the strength of the wake is$C = \int^\infty_0 y^U(y)(u-u_E)dy$, whereu=uE(x, y) asy→ 0 in region (E).In region (W),u(y) is proportional to Iny.By considering a large control surface enclosing the obstacle it is shown that the constant of the wake flow is not simply related to the drag of the obstacle, but is equal to the sum of the couple on the obstacle and an integral of the pressure field on the surface near the body.New wind-tunnel measurements of mean and turbulent velocities and Reynolds stresses in the wake behind a two-dimensional rectangular block on a roughened surface are presented. The turbulent boundary layer is artificially developed by well-established methods (Counihan 1969) in such a way that δ = 8h. These measurements are compared with the theory, with other wind-tunnel measurements and also with full-scale measurements of the wind behind windbreaks.It is found that the theory describes the distribution of mean velocity reasonably well, in particular the (x/h)−1decay law is well confirmed. The theory gives the correct self-preserving form for the distribution of Reynolds stress and the maximum increase of the mean-square turbulent velocity is found to decay downstream approximately as$ (\frac{x}{h})^{- \frac{3}{2}} $in accordance with the theory. The theory also suggests that the velocity deficit is affected by the roughness of the terrain (as measured by the roughness lengthy0) in proportion to In (h/y0), and there seems to be some experimental support for this hypothesis.


1991 ◽  
Vol 225 ◽  
pp. 395-422 ◽  
Author(s):  
R. Akhavan ◽  
R. D. Kamm ◽  
A. H. Shapiro

Experimental results on flow-field statistics are presented for turbulent oscillatory flow in a circular pipe for the range of Reynolds numbers Reδ = U0δ/ν (U0 = amplitude of cross-sectional mean velocity, δ = (2ν/ω)½) = Stokes layer thickness) from 550 to 2000 and Stokes parameters Λ = R/δ (R = radius of the pipe) from 5 to 10. Axial and radial velocity components were measured simultaneously using a two-colour laser-Doppler anemometer, providing information on ensemble-averaged velocity profiles as well as various turbulence statistics for different phases during the cycle. In all flows studied, turbulence appeared explosively towards the end of the acceleration phase of the cycle and was sustained throughout the deceleration phase. During the turbulent portion of the cycle, production of turbulence was restricted to the wall region of the pipe and was the result of turbulent bursts. The statistics of the resulting turbulent flow showed a great deal of similarity to results for steady turbulent pipe flows; in particular the three-layer description of the flow consisting of a viscous sublayer, a logarithmic layer (with von Kármán constant = 0.4) and an outer wake could be identified at each phase if the corresponding ensemble-averaged wall-friction velocities were used for normalization. Consideration of similarity laws for these flows reveals that the existence of a logarithmic layer is a dimensional necessity whenever at least two of the scales R, u*/ω and ν/u* are widely separated; with the exact structure of the flow being dependent upon the parameters u*/Rω and u2*/ων. During the initial part of the acceleration phase, production of turbulence as well as turbulent Reynolds stresses were reduced to very low levels and the velocity profiles were in agreement with laminar theory. Nevertheless, the fluctuations retained a small but finite energy. In Part 2 of this paper, the major features observed in these experiments are used as a guideline, in conjunction with direct numerical simulations of the ‘perturbed’ Navier–Stokes equations for oscillatory flow in a channel, to identify the nature of the instability that is most likely to be responsible for transition in this class of flows.


Author(s):  
Szabolcs R. Balkanyi ◽  
Luis P. Bernal ◽  
Bahram Khalighi

The effect of several drag reducing devices on the near wake of a generic ground vehicle body was investigated. Drag and base pressure measurements were conducted to identify the effects of the devices on the base drag. A Particle Image Velocimetry (PIV) study was conducted to determine changes of the near wake flow field. Averages of more than 200 PIV velocity vector fields were used to compute the mean velocity and turbulent stresses at several cross section planes. The results of the drag and base pressure measurements show that significant reductions of the total aerodynamic drag (as high as 48%) can be achieved with relatively simple devices. The results also indicated that models with base cavity have lower drag than their counter parts without it. The base pressure distributions showed a strong effect of the ground, resulting in decrease of pressure towards the lower half of the base. The PIV study showed that the extent of the recirculation region is not strongly affected by the drag reducing devices. The tested devices however, were found to have a strong effect on the underbody flow. A rapid upward deflection of the underbody flow in the near wake was observed. The devices were also found to reduce the turbulent stresses in the near wake. The turbulent stresses were found to decrease in magnitude with increasing drag reduction.


Sign in / Sign up

Export Citation Format

Share Document