Effet des imperfections géométriques sur la stabilité des coques élastiques cylindriques

2004 ◽  
Vol 31 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Abdellatif Khamlichi ◽  
Mohammed Bezzazi ◽  
Larbi Elbakkali ◽  
Ali Limam

The effects of geometrical imperfections on the critical load of elastic cylindrical shells when subjected to axial compression are studied through analytical modelling. In addition to distributed defects of both axisymmetric or asymmetric forms, emphasis is put on the more severe case of localized defects satisfying the axial symmetry. The Von Kármán – Donnell shell equations were used. The obtained results show that shell strength at buckling varies very much with the defect amplitude. These variations are not monotonic in general. They indicate however a clear reduction of the shell critical load for some defects revealed as the most dangerous ones. The proposed method does not consider the complete coupled situation that may arise from interactions between several localized defects. It facilitates nevertheless straightforward initializing of closer analyses if such couplings are to be taken into account by means of special numerical approaches, because it enables fast a priori selection of the most hazardous isolated defects.Key words: stability, buckling, imperfections, thin shells, silos, localized defects.

Author(s):  
Maria A. Milkova

Nowadays the process of information accumulation is so rapid that the concept of the usual iterative search requires revision. Being in the world of oversaturated information in order to comprehensively cover and analyze the problem under study, it is necessary to make high demands on the search methods. An innovative approach to search should flexibly take into account the large amount of already accumulated knowledge and a priori requirements for results. The results, in turn, should immediately provide a roadmap of the direction being studied with the possibility of as much detail as possible. The approach to search based on topic modeling, the so-called topic search, allows you to take into account all these requirements and thereby streamline the nature of working with information, increase the efficiency of knowledge production, avoid cognitive biases in the perception of information, which is important both on micro and macro level. In order to demonstrate an example of applying topic search, the article considers the task of analyzing an import substitution program based on patent data. The program includes plans for 22 industries and contains more than 1,500 products and technologies for the proposed import substitution. The use of patent search based on topic modeling allows to search immediately by the blocks of a priori information – terms of industrial plans for import substitution and at the output get a selection of relevant documents for each of the industries. This approach allows not only to provide a comprehensive picture of the effectiveness of the program as a whole, but also to visually obtain more detailed information about which groups of products and technologies have been patented.


Author(s):  
Laure Fournier ◽  
Lena Costaridou ◽  
Luc Bidaut ◽  
Nicolas Michoux ◽  
Frederic E. Lecouvet ◽  
...  

Abstract Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials. Key Points • Data-driven processes like radiomics risk false discoveries due to high-dimensionality of the dataset compared to sample size, making adequate diversity of the data, cross-validation and external validation essential to mitigate the risks of spurious associations and overfitting. • Use of radiomic signatures within clinical trials requires multistep standardisation of image acquisition, image analysis and data mining processes. • Biological correlation may be established after clinical validation but is not mandatory.


2021 ◽  
Vol 13 (22) ◽  
pp. 4509
Author(s):  
Gaspare Galati ◽  
Gabriele Pavan ◽  
Kubilay Savci ◽  
Christoph Wasserzier

In defense applications, the main features of radars are the Low Probability of Intercept (LPI) and the Low Probability of Exploitation (LPE). The counterpart uses more and more capable intercept receivers and signal processors thanks to the ongoing technological progress. Noise Radar Technology (NRT) is probably a very effective answer to the increasing demand for operational LPI/LPE radars. The design and selection of the radiated waveforms, while respecting the prescribed spectrum occupancy, has to comply with the contrasting requirements of LPI/LPE and of a favorable shape of the ambiguity function. Information theory seems to be a “technologically agnostic” tool to attempt to quantify the LPI/LPE capability of noise waveforms with little, or absent, a priori knowledge of the means and the strategies used by the counterpart. An information theoretical analysis can lead to practical results in the design and selection of NRT waveforms.


2019 ◽  
Vol 4 (1) ◽  
pp. 64-67
Author(s):  
Pavel Kim

One of the fundamental tasks of cluster analysis is the partitioning of multidimensional data samples into groups of clusters – objects, which are closed in the sense of some given measure of similarity. In a some of problems, the number of clusters is set a priori, but more often it is required to determine them in the course of solving clustering. With a large number of clusters, especially if the data is “noisy,” the task becomes difficult for analyzing by experts, so it is artificially reduces the number of consideration clusters. The formal means of merging the “neighboring” clusters are considered, creating the basis for parameterizing the number of significant clusters in the “natural” clustering model [1].


2013 ◽  
Vol 8 (No. 4) ◽  
pp. 186-194
Author(s):  
M. Heřmanovský ◽  
P. Pech

This paper demonstrates an application of the previously published method for selection of optimal catchment descriptors, according to which similar catchments can be identified for the purpose of estimation of the Sacramento – Soil Moisture Accounting (SAC-SMA) model parameters for a set of tested catchments, based on the physical similarity approach. For the purpose of the analysis, the following data from the Model Parameter Estimation Experiment (MOPEX) project were taken: a priori model parameter sets used as reference values for comparison with the newly estimated parameters, and catchment descriptors of four categories (climatic descriptors, soil properties, land cover and catchment morphology). The inverse clustering method, with Andrews’ curves for a homogeneity check, was used for the catchment grouping process. The optimal catchment descriptors were selected on the basis of two criteria, one comparing different subsets of catchment descriptors of the same size (MIN), the other one evaluating the improvement after addition of another catchment descriptor (MAX). The results suggest that the proposed method and the two criteria used may lead to the selection of a subset of conditionally optimal catchment descriptors from a broader set of them. As expected, the quality of the resulting subset of optimal catchment descriptors is mainly dependent on the number and type of the descriptors in the broader set. In the presented case study, six to seven catchment descriptors (two climatic, two soil and at least two land-cover descriptors) were identified as optimal for regionalisation of the SAC-SMA model parameters for a set of MOPEX catchments.


Sign in / Sign up

Export Citation Format

Share Document