Specifications and testing of self-consolidating mortar designated for annular space grouting

2011 ◽  
Vol 38 (4) ◽  
pp. 422-432 ◽  
Author(s):  
Soo-Duck Hwang ◽  
Kamal H. Khayat ◽  
Richard Morin

An experimental program was undertaken to evaluate the performance of self-consolidating mortar designed for filling small annular spaces for the rehabilitation of underground water line or sewage pipelines. The study also intended to establish a testing protocol to validate the workability of repair grout. All the investigated mixtures had good filling and passing ability with adequate retention of workability over 3 h. The repair mortars exhibited high stability with bleeding lower than 0.3% compared to 3% bleeding in the case of the reference neat cement grout. The reference grout had a lower plastic viscosity and higher slump flow values than the sanded repair grouts. A V-funnel with 30 mm × 30 mm overture and a flow cone with 12.7 mm overture are recommended for mortar made with concrete sand with a 5 mm nominal size and micro mortar with fine sand with a nominal size up to 3 mm, respectively.

2016 ◽  
Vol 9 (6) ◽  
pp. 969-988 ◽  
Author(s):  
R. S. Alferes Filho ◽  
◽  
F. K. Motezuki ◽  
R. C. O. Romano ◽  
R. G. Pileggi ◽  
...  

ABSTRACT The use of self-compacting concrete in civil construction industry presents various advantages, since the material shows adequate workability during fresh state. When fiber reinforcement is used, there are changes in its behavior that require attention. This study aimed to evaluate the applicability of rheological tests and the correlation between its results and those obtained with regular tests used to control SCCs. In that sense, different mixtures of SCC with different steel fiber contents were produced in order to be analyzed in the experimental program described. Rotational rheology tests and slump flow and L-box tests were performed. The results showed that slump flow test did not present good correlations with rheological parameters. On the other hand, this test was able to point out the risk of segregation of the mixtures with higher fiber contents. A good correlation was obtained between the L-box test results and rheological parameters. The L-box was also able to show loss in the passing ability of SCC related to the rise of plastic viscosity and yield stress. These tests also presented a good correlation with the rheological parameters when lower fiber contents were used. Although the rheometry test was unable to evaluate these problems, this kind of test gave more objective and reliable data on variations in rheological parameters related to the increase of fiber content, and proved to be a more reliable test to this kind of application, especially when applied together with the conventional tests.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5312
Author(s):  
Xinxin Ding ◽  
Haibin Geng ◽  
Kang Shi ◽  
Li Song ◽  
Shangyu Li ◽  
...  

To ensure the quality of concrete construction, the workability of fresh mix measured by rational test methods is critical to be controlled. With the presence of steel fibers, whether the test methods and evaluation indices of fresh self-compacting concrete (SCC) are adaptable for self-compacting steel fiber reinforced concrete (SFRC) needs to be systematically verified. In this paper, seven groups of self-compacting SFRC, referenced with one group SCC, were prepared by using the mix proportion design method based on the steel fiber-aggregates skeleton packing test. The main factors included the volume fraction and the length of hooked-end steel fiber. Tests for filling ability, passing ability, and stability of fresh self-compacting SFRC and SCC were carried out. Results indicate that the adaptability was well for the slump-flow test with indices of slump flow and flow time T500 to evaluate the filling ability, the J-ring flow test with an index of PA level to evaluate the passing ability, and the static segregation test with an index of static segregation resistance to evaluate the stability of fresh self-compacting SFRC. By the repeated tests and measurements, the slump cone should be vertically lifted off to a height of 300 mm within 3 s at a constant speed, the spacing of the rebar in the J-ring test should be adjusted to be two times the fiber length. If the table jumping test is used, the dynamic segregation percent should be increased to 35% to fit the result of the static segregation test. Good workability of the self-compacting SFRC prepared in this study is presented with the general evaluation of test results.


2011 ◽  
Vol 250-253 ◽  
pp. 409-416 ◽  
Author(s):  
Md. Safiuddin ◽  
Md. Abdus Salam ◽  
Mohd Zamin Jumaat

Palm oil fuel ash (POFA) has been used successfully as a supplementary cementing material in various types of concrete. In the present study, self-consolidating concrete (SCC) was produced by using POFA as a partial replacement of ordinary portland cement (OPC). In total, sixteen SCC mixes were prepared by varying water to binder (W/B) ratio, POFA content, and high-range water reducer (HRWR). POFA was used by replacing 0–30% of OPC by weight at the W/B ratios ranging from 0.25 to 0.40. The filling ability, passing ability and segregation resistance of various SCC mixes were investigated. The filling ability was determined with respect to slump flow, 50-cm slump flow time, inverted slump cone flow spread and time, and V-funnel flow time. The passing ability was examined with respect to J-ring flow. In addition, the segregation resistance was assessed with regard to sieve segregation index and column segregation factor. Based on the data obtained, the correlations for the fresh properties of SCC were sought. The experimental findings showed strong correlations between most of the fresh properties of SCC.


1976 ◽  
Vol 56 (3) ◽  
pp. 149-158 ◽  
Author(s):  
A. BRUNELLE ◽  
S. PAWLUK ◽  
T. W. PETERS

The process of solodization was studied with respect to its chemical, physical, and mineralogical aspect and with particular emphasis upon the clay fraction. The net gain or loss of clay occurring in each profile upon solodization was calculated with quartz in the fine sand fraction serving as index mineral. Preferential translocation of montmorillonite over illite was evident in all profiles. K2O content in the total clay fraction indicated that illitization had taken place. For each of three sampling sites, the more solodized members of the sequence of Solonetzic profiles showed a net gain of clay while the least solodized members showed either a deficit or a much smaller gain. Reduction in size of the coarse material (sand size) was evident in most profiles studied. In some profiles, particle size reduction of the sand fraction was accompanied by an increase in clay size quartz in the eluvial horizons which suggests that quartz distribution is to some degree also affected by solodization. Although the use of quartz as an index mineral may therefore not provide an absolute degree of accuracy in quantitative pedology, it was felt that its abundance and its high stability insured useful results.


Author(s):  
Gideon O. Bamigboye ◽  
David O. Olukanni ◽  
Adeola A. Adedeji ◽  
Kayode J. Jolayemi

This study deals mainly with the mix proportions using granite and unwashed gravel as coarse aggregate for self-compacting concrete (SCC) and its workability, by considering the water absorption of unwashed gravel aggregate. Mix proportions for SCC were designed with constant cement and fine aggregate while coarse aggregates content of granite-unwashed gravel combination were varied in the proportion 100%, 90%/10%, 80%/20%, 70%/30%, 60%/40%, 50% /50%, represented by SCC1, SCC2, SCC3, SCC4, SCC5 and SCC6. 100% granite (SCC1) serves as the control. The workability of the samples was quantitatively evaluated by slump flow, T500, L-box, V- funnel and sieve segregation tests. Based on the experimental results, a detailed analysis was conducted. It was found that granite and unwashed gravel with SCC1, SCC2 and SCC3 according to EFNARC (2002) standard have good deformability, fluidity and filling ability, which all passed consistency test. SCC1, SCC2 and SCC3 have good passing ability while all mixes were in the limit prescribed by EFNARC (2002). It can be concluded that the mix design for varying granite-unwashed gravel combination for SCC presented in this study satisfy various requirements for workability hence, this can be adopted for practical concrete structures.


2021 ◽  
Author(s):  
Hyder. Jahim

Wollastonite is a natural material that consists of calcium silica oxides. This research program focused on evaluating the feasibility of using wollastonite in concrete or mortar. The experimental program for this study is designed to investigate the strength conribution for mortar cubes with wollastonite at 5 and 10% replacement of sand or Porland Cement (PC). The compressive strength has shown remarkable improvment in all ages compared with control mix when there was 5% sand replacement. The study also tested the compresiive strenght for concrete with the same levelsof wolllastonite as in mortar. The compressive strength fo cyclinders having 5% and 10% wollastonite powder as cement replacement was not improved compared with the control mix. Furthermore, the study tested the possibility of using wollastonite as mineral filler in Self Consolidation Concrete (SCC). Mixture of SCC were designed with the levels 0, 8, 10% of wollastonite powder. The fresh properties were evaluated using the slump flow.


2021 ◽  
Vol 47 (3) ◽  
pp. 906-916
Author(s):  
Simon O. Olawale ◽  
Mutiu A. Kareem ◽  
Habeeb T. Muritala ◽  
Abiola U. Adebanjo ◽  
Olusegun O. Alabi ◽  
...  

The use of industrial by-products in concrete production is part of concerted efforts on the reduction of environmental hazards attributed to the mining of conventional aggregates. Consideration of iron filings (IF), a by-product from steel production process, is an environmentally friendly way of its disposal which is expected to yield economic concrete production. Six self-compacting concrete (SCC) mixes were made by partially substituting river sand with IF at 5%, 10%, 15%, and 20% and the mix without IF (0% IF) served as the control. The water-binder (w/b) ratio of 0.45 was adopted for all mixes. The fresh state properties of SCC evaluated include: filling ability determined using slump flow and T500 mm slump flow tests, passing ability determined using L-box test and segregation resistance determined using V-funnel tests. The strength properties of SCC considered were compressive and tensile strengths. All the SCC mixes met the fresh properties requirements for filling capacity, passing ability, and segregation resistance. The 28-day compressive and tensile strengths of SCC increased by 3.46% and 8.08%, respectively, with IF replacement up to 15% compared to the control SCC. However, there was reduction in compressive and tensile strengths of SCC with IF replacement beyond 15%. The strength properties of SCC is considerably enhanced with the addition of up to 15% IF. Hence, the optimum content of 15% IF is considered suitable as a replacement for river sand in SCC. Keywords: Self-compacting concrete; iron filings; fine aggregates; filling ability; passing ability


Abstract. Self-compacting concrete, which is characterized by its capacity to flow, can also consolidate under its weight. Hardened concrete from concrete building demolition can be used to partially replace natural coarse aggregate in self-compacting concrete. The current study compares the properties of self-compacting concrete with 0 percent, 25%, 50%, 75%, and 100% substitution of recycled coarse aggregate in the fresh and hardened states. The evolution of passing ability properties using the L-box test, filling ability properties using the slump cone test, and segregation properties using the V-funnel test are also included. Compression, tension, and flexural strength are all checked for hardened properties. Rapid chloride permeability and sorptivity tests are used to assess durability. The experimental program revealed that at RCA utilization levels of 25% to 50%, little to no negative impact on power, workability, or durability properties was observed.


This paper explains the combined effect of granite cutting waste and recycled concrete on the workability and mechanical properties of self compacting concrete. Experimental plan is divided in such a way that granite cutting waste is replaced with fine aggregate at 0, 20,40,60,80 and 100% proportions. Recycled concrete is replaced with the coarse aggregate starting from 20 to 100%. Total 36 mixes were designed to check the fresh and hardened properties. Slump flow and T500, v-funnel and L-box test are conducted to know the flow ability and passing ability of concrete. To study the hardened properties compressive strength, flexural strength test values are to be collected.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Oluwaseun Mark ◽  
Anthony Ede ◽  
Chinwuba Arum ◽  
Solomon Oyebisi

Abstract Indiscriminate waste disposal poses a severe environmental challenge globally. Recycling of industrial wastes for concrete production is currently the utmost effective way of managing wastes for a cleaner environment and sustainable products. This study investigates the strength characteristics of self-compacting concrete (SCC) containing induction furnace slag (IFS) as a supplementary cementitious material (SCM). The materials utilized include 42.5R Portland cement, induction furnace slag as an SCM ranging from 0 to 50 % by cement weight at 10 % interval, river sand, granite, water and superplasticizer. The fresh properties were tested for filling ability, passing ability and segregation resistance, the strength characteristics measured include compressive strength, splitting tensile strength, flexural strength and Schmidt/rebound number. The oxide compositions and microstructural analysis of SCC were investigated using x-ray fluorescence analyser (XRF) and scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy (SEM-EDS), respectively. Empirical correlations were statistically analyzed using MS-Excel tool. The filling ability characteristic was determined via both the slump flow test and the T50cm slump flow time test. Moreover, the passing ability characteristic was determined using L-Box test. The segregation resistance characteristic was determined using V-funnel at T5minutes test. The results of the fresh properties showed a reduction in the slump flow with increasing IFS content. On the other hand, the T50cm slump flow increased with increasing IFS content. Furthermore, the L-Box decreased with higher IFS content. On the contrary, the V-funnel at T5minutes increased considerably with greater IFS content. The strength test results revealed that the strength properties increased to 20 % IFS, with a value of 66.79 N/mm2 compressive strength at 56 days, giving a rise of 12.61 % over the control. The SCC microstructural examinations revealed the amorphous and better interface structures with increasing IFS content in the mix. The empirical correlations revealed that linear relationships exist among the measured responses (fresh and strength properties). Ultimately, IFS could be utilized as a sustainable material in producing self-compacting concrete.


Sign in / Sign up

Export Citation Format

Share Document