Utilization of Iron Filings as Partial Replacements for Sand in Self-Compacting Concrete

2021 ◽  
Vol 47 (3) ◽  
pp. 906-916
Author(s):  
Simon O. Olawale ◽  
Mutiu A. Kareem ◽  
Habeeb T. Muritala ◽  
Abiola U. Adebanjo ◽  
Olusegun O. Alabi ◽  
...  

The use of industrial by-products in concrete production is part of concerted efforts on the reduction of environmental hazards attributed to the mining of conventional aggregates. Consideration of iron filings (IF), a by-product from steel production process, is an environmentally friendly way of its disposal which is expected to yield economic concrete production. Six self-compacting concrete (SCC) mixes were made by partially substituting river sand with IF at 5%, 10%, 15%, and 20% and the mix without IF (0% IF) served as the control. The water-binder (w/b) ratio of 0.45 was adopted for all mixes. The fresh state properties of SCC evaluated include: filling ability determined using slump flow and T500 mm slump flow tests, passing ability determined using L-box test and segregation resistance determined using V-funnel tests. The strength properties of SCC considered were compressive and tensile strengths. All the SCC mixes met the fresh properties requirements for filling capacity, passing ability, and segregation resistance. The 28-day compressive and tensile strengths of SCC increased by 3.46% and 8.08%, respectively, with IF replacement up to 15% compared to the control SCC. However, there was reduction in compressive and tensile strengths of SCC with IF replacement beyond 15%. The strength properties of SCC is considerably enhanced with the addition of up to 15% IF. Hence, the optimum content of 15% IF is considered suitable as a replacement for river sand in SCC. Keywords: Self-compacting concrete; iron filings; fine aggregates; filling ability; passing ability

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Oluwaseun Mark ◽  
Anthony Ede ◽  
Chinwuba Arum ◽  
Solomon Oyebisi

Abstract Indiscriminate waste disposal poses a severe environmental challenge globally. Recycling of industrial wastes for concrete production is currently the utmost effective way of managing wastes for a cleaner environment and sustainable products. This study investigates the strength characteristics of self-compacting concrete (SCC) containing induction furnace slag (IFS) as a supplementary cementitious material (SCM). The materials utilized include 42.5R Portland cement, induction furnace slag as an SCM ranging from 0 to 50 % by cement weight at 10 % interval, river sand, granite, water and superplasticizer. The fresh properties were tested for filling ability, passing ability and segregation resistance, the strength characteristics measured include compressive strength, splitting tensile strength, flexural strength and Schmidt/rebound number. The oxide compositions and microstructural analysis of SCC were investigated using x-ray fluorescence analyser (XRF) and scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy (SEM-EDS), respectively. Empirical correlations were statistically analyzed using MS-Excel tool. The filling ability characteristic was determined via both the slump flow test and the T50cm slump flow time test. Moreover, the passing ability characteristic was determined using L-Box test. The segregation resistance characteristic was determined using V-funnel at T5minutes test. The results of the fresh properties showed a reduction in the slump flow with increasing IFS content. On the other hand, the T50cm slump flow increased with increasing IFS content. Furthermore, the L-Box decreased with higher IFS content. On the contrary, the V-funnel at T5minutes increased considerably with greater IFS content. The strength test results revealed that the strength properties increased to 20 % IFS, with a value of 66.79 N/mm2 compressive strength at 56 days, giving a rise of 12.61 % over the control. The SCC microstructural examinations revealed the amorphous and better interface structures with increasing IFS content in the mix. The empirical correlations revealed that linear relationships exist among the measured responses (fresh and strength properties). Ultimately, IFS could be utilized as a sustainable material in producing self-compacting concrete.


In this investigation an attempt is made to replace coarse aggregate partially or fully by recycled concrete waste aggregates and the fresh state properties of modified SCC (Self Compacting Concrete) was elaborated by conducting slump flow, V-funnel, L-Box and J-ring tests. The properties such as filling ability, passing ability, segregation, bleeding and stability of the modified SCC were determined by using the fresh state tests. The results of this experiment revealed that it is possible to modify SCC by partially or fully replacing the coarse aggregate by RCWA. The optimum mix also determined by varying RCWA and mineral admixture content in SCC.


Author(s):  
Gideon O. Bamigboye ◽  
David O. Olukanni ◽  
Adeola A. Adedeji ◽  
Kayode J. Jolayemi

This study deals mainly with the mix proportions using granite and unwashed gravel as coarse aggregate for self-compacting concrete (SCC) and its workability, by considering the water absorption of unwashed gravel aggregate. Mix proportions for SCC were designed with constant cement and fine aggregate while coarse aggregates content of granite-unwashed gravel combination were varied in the proportion 100%, 90%/10%, 80%/20%, 70%/30%, 60%/40%, 50% /50%, represented by SCC1, SCC2, SCC3, SCC4, SCC5 and SCC6. 100% granite (SCC1) serves as the control. The workability of the samples was quantitatively evaluated by slump flow, T500, L-box, V- funnel and sieve segregation tests. Based on the experimental results, a detailed analysis was conducted. It was found that granite and unwashed gravel with SCC1, SCC2 and SCC3 according to EFNARC (2002) standard have good deformability, fluidity and filling ability, which all passed consistency test. SCC1, SCC2 and SCC3 have good passing ability while all mixes were in the limit prescribed by EFNARC (2002). It can be concluded that the mix design for varying granite-unwashed gravel combination for SCC presented in this study satisfy various requirements for workability hence, this can be adopted for practical concrete structures.


Self-compacting concrete is one that is flow able by its own. The SCC is suitable for placing in dense reinforcement structures. It is a new generation performance concrete known for its outstanding deformity and high resistance to bleeding. The concrete is frail material which is comparatively tough in compression but fragile in tension. The tensile strength of concrete is improved by addition of fibers in the concrete mix. The addition of such fibers has negative consequence on the workability of concrete. Various types of fibers are used in concrete to provide the higher flexural strength and better tensile strength. In this research steel fibers are used to provide a better strength as compared with normal reinforced concrete. Steel fiber in SCC significantly improves its flexural strength, improved tensile properties, reduce cracking and improve durability. In this research the investigation of steel fiber in SCC to enhance the strength properties of SCC. The objective of the study was to determine different properties of SCC with steel fiber at different proportions. The experimental investigation was took on the freshly mixed and hardened properties of SCC of various mix with the different variations of fiber 0.25%, 0.50%, 0.75% and 1% by using Viscosity Modified Agent (VMA) 1.5% of cement material by using M25 grade of concrete. In this research a series of tests were carried out for workability like slump cone test, U funnel, V funnel, L box test on SCC to check freshly mix properties like flow-ability, filling-ability, and passing-ability and hardened properties like compressive strength, split-tensile strength and flexural strength respectively and test were conducted at the age of 7Days, 14Days, 28Days on the SCC. The advantage of adding steel fiber in self-compacting concrete is that it enhances its overall strength.


This study presents a comprehensive overview of replacing natural river sand (FA) with foundry waste sand (FWS) in fibre-reinforced high strength self-consolidating concrete (SCC). Fine aggregate (FA) was replaced with FWS, proportions varying from 0% to 70%. To maintain workability in the SCC mix, chemical admixtures were added. During fresh state, properties of SCC like filling and passing ability, segregation resistance were studied. Assessment results indicated a moderate reduction in workability, slump flow decreased by 4% over control mix, for 70% replacement of FA with FWS. SCC mixes were prepared with different FWS contents and evaluated for density, modulus of elasticity, compressive, flexural and split tensile strengths. The compressive strength increased by 6% to 8%, flexural strength by 2% to 4% and split tensile strength by 2% to 3% when the FA was partially replaced by 20% with FWS. Density of SCC increased by 6.5% and modulus of elasticity decreased by 10% for 70% replacement of FA with FWS. From the assessment outcome, it can be resolved that FWS could form a dependable alternative source for natural river sand replacement in high strength SCC.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 566
Author(s):  
Sushree Sangita Rautray ◽  
Manas Ranjan Das

Self-Compacting Concrete (SCC) is becoming a popular choice in concrete industries due to its filling ability in congested reinforcement and its auto compacting nature. In the present work, an attempt has been made to investigate the properties of fresh and hardened concrete made by partial replacement of cement by fly ash and ground granulated blast furnace slag (ggbs) in different percentages. The essential properties of freshly prepared concrete like flowability, passing ability, filling ability are determined by slump flow test, slump flow T50cm, V-funnel, J-ring and L-box test. The values are found to satisfy EFNARC guidelines. Tests have also been conducted to assess and analyze the properties of hardened concrete such as compressive strength, split tensile strength and flexural strength. Thus an attempt has been made to develop a formulation of an economically feasible and environment friendly self-compacting concrete.   


2010 ◽  
Vol 13 (2) ◽  
pp. 5-15
Author(s):  
Hoang Huy Kim ◽  
Vinh Duc Bui ◽  
Manh Van Tran ◽  
Tri Son Ha

Ultra high strength self compacting concrete (UHSSCC) with high filling ability, passing ability, segregation resistance and ultra high compressive strength have been used in many modern construction project. This paper represents the optimization of concrete composition for ultra high strength self compacting concrete, ỉn this experiment, river sand and crush stone were used as fine aggregate, Dmax of coarse aggregate is 10 mm. The study show that slump flow was 525 mm up to 850 mm and compressive strength was 140 MPa up to 170 MPa.


2021 ◽  
Vol 261 ◽  
pp. 02014
Author(s):  
Xinglu Cai ◽  
Ruiwen Liu ◽  
Junhao Fan ◽  
Yingdi Liao

Over-exploitation of natural river sand and waste oyster shells (WOS) dumped randomly will cause serious environmental issues. Thus, a drive to using crushed WOS as fine aggregates to substitute river sand in concrete production has been initiated. This paper conducted experimental research to study the possibility of employing the crushed WOS as 100% fine aggregates in concrete. The workability, compressive strength and its size-effect, and sustainability performance of the concrete mixtures were investigated. The results indicated that, under the same water-cement ratio, the WOS concrete showed a great improvement in strength properties while a decline was found in slump tests, compared to the control concrete. Besides, the use of the crushed WOS in concrete production resulted in a modification in both eco-efficiency and cost-efficiency.


2017 ◽  
Vol 67 (325) ◽  
pp. 111 ◽  
Author(s):  
D. Burgos ◽  
A. Guzmán ◽  
K. M.A. Hossain ◽  
S. Delvasto

This study evaluates the use of large amounts of fine powders (fillers) derived from a Colombian volcanic material into the production of self-compacting concrete (SCC) for lower strength applications. The effects on SCC properties were studied with the incorporation of up to 50% of volcanic material of Tolima (MVT) as a partial substitute of the total weight of Portland cement. The workability was determined through slump flow, V-funnel, and L-box test. The compressive strength results were analyzed statistically by MINITAB. These demonstrated that 30% (by total weight of cementitious material) was the maximum allowable percentage of MVT to be used in the production of SCCs. Based on this, mechanical and permeability properties of SCC MVT 30% were evaluated at 28, 90 y 360 curing days. SCC MVT 30% exhibited compressive strength of 21 and 27 MPa after 28 and 360 days of curing, respectively.


Waterway sand and pit sand are the most normally utilized fine aggregates for concrete creation in many parts of the world. Huge scale extraction of these materials presents genuine ecological risk in numerous parts of the nation. Aside from the ecological danger, there still exists the issue of intense lack in many regions. In this way, substitute material in place of river sand for concrete production should be considered. The paper means to examine the compressive and split tensile qualities of concrete produced using quarry residue, sand, and a blend of sand and quarry dust. The experimentation is absolutely research facility based. A total of 60 concrete cubes of size 150 mm x 150 mm x 150 mm, and 60 cylinders 150 mm in diameter and 300 mm deep, conforming to M50 grade were casted. All the samples were cured and tested with a steady water/concrete proportion of 0.31. Out of the 60 blocks cast, 20 each were made out of natural river sand, quarry dust and an equivalent blend of sand and quarry dust. It was discovered that the compressive strength and split tensile strength of concrete produced using the blend of quarry residue and sand was higher than the compressive qualities of concrete produced using 100% sand and 100% quarry dust.


Sign in / Sign up

Export Citation Format

Share Document