Seismic shear demand of ductile cantilever walls: a Canadian code perspective

1994 ◽  
Vol 21 (3) ◽  
pp. 363-376 ◽  
Author(s):  
André Filiatrault ◽  
Danilo D'Aronco ◽  
René Tinawi

During severe earthquakes, ductile flexural walls are expected to exhibit inelastic flexural behaviour while other brittle deformation mechanisms, such as shear, should remain elastic. The philosophy of the Canadian seismic provisions for flexural walls is based on the assumption that the force reduction factor is applicable to both flexure and shear. If the bending moments are limited because of the flexural strength of a wall, then the shear forces are considered to be limited by the same ratio. Recent case studies have not confirmed this philosophy. Brittle shear failures in walls are still possible even if their shear strengths are established by the Canadian standards. This paper presents an analytical investigation on the shear demand of ductile flexural walls designed for three different seismic zones in Canada. For each zone, an ensemble of code compatible historical earthquake ground motions is identified. The shear demand of each structure, under each earthquake record, is obtained by nonlinear time-history dynamic analyses. In 77% of the cases, the computed dynamic shear demand is higher than the current code shear strength. To address this issue, a force modification factor for shear, different from the one for flexure, is suggested for the Canadian code. Key words: earthquake, seismic response, shear walls.

2000 ◽  
Vol 27 (3) ◽  
pp. 506-522 ◽  
Author(s):  
O Chaallal ◽  
D Gauthier

This paper presents the results of nonlinear dynamic analyses carried out on ductile coupled shear walls (CSWs) to investigate the seismic shear demand on wall segments. The objectives of the present study were to evaluate the dynamic amplification and establish a code-format force reduction factor for shear, applicable in Canada. The study considered three Canadian seismic zones (4, 5, and 6), five numbers of storeys (6, 10, 15, 20, and 30), three degrees of coupling (low, medium, and high), and 10 historical earthquake records encompassing a broad range of frequency contents. Overall, 450 analyses were performed. Results indicate that the New Zealand amplification factor βv presently used in Canada overestimates the dynamic amplification. Additionally, the use of the overstrength factor for shear γp for tension walls may underestimate their shear resistance and result in a shear failure. Conversely, the use of γp for compression walls provided a reasonable factor of safety. Finally, for the shear design of CSWs, two alternative approaches are suggested. The first involves the use of a force reduction factor for shear, Rv, including the dynamic amplification factor γd and the overstrength factor γp as follows: Rv = 2.0 for Za > Zv, Rv = 1.0 for Za < Zv, and Rv = 1.3 for Za = Zv, where Za and Zv are acceleration- and velocity-related zonal identifiers. The second approach implies the use of the overstrength factor γp of the compression wall for both walls of CSWs and βv = 1.0.Key words: coupled shear walls, reinforced concrete, degree of coupling, seismic, frequency content, shear demand, dynamic amplification factor, force reduction factor for shear.


2018 ◽  
Vol 763 ◽  
pp. 295-300 ◽  
Author(s):  
Khaled Saif ◽  
Chin Long Lee ◽  
Trevor Yeow ◽  
Gregory A. MacRae

Nonlinear time history analyses of SDOF bridge columns with elasto-plastic flexural behaviour which are subject to eccentric gravity loading are conducted to quantify the effect of ratchetting. Peak and residual displacements were used as indicators of the degree of ratchetting. The effects of member axial loads and design force reduction factors were also investigated. It was shown that displacement demands increased with increasing eccentric moment. For eccentric moment of 30% of the yield moment, the average maximum and residual displacements increase by 4.2 and 3.8 times the maximum displacement, respectively, which the engineers calculate using static methods without considering ratchetting effect. Design curves for estimating the displacement demands for different eccentric moments are also developed. The current NZ1170.5 (2016) provisions were found to be inadequate in estimating the maximum displacement for steel structures, and hence, new provisions for steel structures should be presented.


1993 ◽  
Vol 9 (1) ◽  
pp. 121-135 ◽  
Author(s):  
Chia-Ming Uang

The two-level design philosophy is recognized by modern seismic codes. When this philosophy is implemented in the code, the intensities of the two design earthquakes, the structural performance criteria, explicit versus implicit design approach, and the effectiveness to achieve the performance criteria vary considerably from one code to the other. For the ultimate limit state, the UBC was compared with seismic codes of Canada, Japan, and Eurocode. It was found that a trend to deviate from the UBC approach of using a single seismic force reduction factor (i.e., Rw) is apparent. Instead, an approach using a compound force reduction factor which considers the contribution of structural ductility and structural overstrength is preferred. For the serviceability limit state, a comparison of the level of design earthquakes and performance criteria of the UBC, Tri-Services Manual, and the Japanese code indicates that the UBC produces the most flexible structure, and that UBC does not control structural damage. It is suggested that the UBC adopts an explicit serviceability design procedure.


2006 ◽  
Vol 22 (1) ◽  
pp. 267-286 ◽  
Author(s):  
Jorge L. Varela ◽  
Jennifer E. Tanner ◽  
Richard E. Klingner

This paper addresses the development and application of a rational procedure to select the seismic force reduction factor ( R) and the displacement amplification factor ( Cd) for the design of autoclaved aerated concrete (AAC) structures. The values of R and Cd are proposed based on a combination of laboratory test results and numerical simulation. The test results are obtained from 14 AAC shear-wall specimens tested under simulated gravity and quasi-static reversed cyclic lateral loads. Analytical responses are predicted using nonlinear analysis models whose hysteretic characteristics are based on the experimentally observed responses. Using an iterative procedure, typical AAC structures are designed using successively larger trial values of the factor, R, until the structure's response (either ductility or drift) exceeds the experimentally determined capacity. A lower fractile of those critical values, modified for probable structural overstrength, is taken as a reasonable value of 3 for R. Using an analogous procedure, a reasonable value of Cd is determined as 3. These values will undoubtedly be refined based on field experience, just as they have been for other structural systems.


2003 ◽  
Vol 30 (2) ◽  
pp. 360-365 ◽  
Author(s):  
Donald L Anderson

Some designers have long known that elastically responding shear-wall or core-wall type high-rise structures will not overturn if the footing size is smaller than that required to resist the elastic forces. Most shear walls are designed and built with a yield hinge mechanism at the base using a relatively high value of the force reduction factor R, and the foundation should be stronger than the yield hinge strength if the wall is to perform as designed. Many walls, however, built with R = 2 are stronger than they need to be because of reasons such as architectural sizing and minimum reinforcement requirements. If for these cases the foundation is to be stronger than the wall, then it will in effect be designed for forces corresponding to an R value of <2. This study looks at the effect on the displacement of a shear-wall type structure if the footing is allowed to rock. The structure is kept elastic and the footing is sized to correspond to R values ranging from 1.0 to 3.5. The analysis uses gap elements to model the foundation soil response so that the footing can lift off the soil. Soil stiffness and strength are modelled for a rock and a firm clay site. The response of 7-, 15-, and 30-storey structures to 11 different acceleration records, modified to match a spectrum given in the 1995 National Building Code of Canada (NBCC) for Vancouver, is determined for the different footing dimensions. The results indicate that a footing sized for an R value of 2 does not result in a significant increase in displacement when compared with the fixed base elastic case. In the next version of the NBCC it is suggested that footings need not be designed for forces corresponding to R < 2.Key words: seismic shear walls, overturning, liftoff, rocking footings.


Author(s):  
J. B. Berrill ◽  
M. J. N. Priestley ◽  
R. Peek

This paper provides background material to the loadings section
of the model code recently published by the Society's Discussion Group
on Bridge Design, and presents a preliminary re-evaluation of the design spectra given in the proposed code. The basis for the proposed zoning scheme, in which the present uniform Zone B is replaced by a transition zone, is discussed. Arguments are given underlying the return period coefficients, and the force reduction factor used in generating the inelastic response spectra of the code. It is likely that the design spectra and the values of the other coefficients determining base shear forces will need to be revised as further research results become available; however, the form of the base shear expression, and the loadings section
as a whole, should remain unchanged. Re-evaluated spectra suggest that
the seismic coefficient values given in the proposed code may be too large by about 25 percent in Zone A, and too low by as much as 40 percent in
 Zone C. While the reassessed values should be more reliable than the original ones, they are based on a Japanese attenuation model, which has
not yet been calibrated against New Zealand data. Further research is required to establish an appropriate attenuation model for New Zealand;
 to avoid undue proliferation of design loadings it is preferable to defer revision of the various coefficients in the proposed code until such a
model is available. Until this is done, the proposed spectra should be viewed with caution, particularly in Zone C.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 135
Author(s):  
Hajiyev Mukhlis Ahmad ◽  
Hasan Dabbaghasadollahi Poor

This study focuses on an analytical study on reinforced steel structures with concrete shear wall. The structures studied was analyzed using nonlinear time history method and the effect of installing  concrete shear walls in the structural plan on the target point displacement. By comparing the roofs' displacement diagrams in different structures with different layout of the shear wall in the plan, it is concluded that in order to achieve the proper result in the design of the structures, the shear walls must be located in the middle of the plan in form of core and enclosed with structural columns.  


2021 ◽  
Vol 10 (12) ◽  
pp. 180-186
Author(s):  
Özlem Çavdar

The use of support braced systems represents one of the best solutions for retrofitting or upgrading the tall reinforced concrete buildings in areas with a high earthquake hazard. In this study, the behavior of a reinforced concrete tall structure under seismic loads is examined based on the Turkish Building Earthquake Code 2019 (TBEC-2019). Support braced systems were added to the 25-story structure on 0.4H and 0.8H levels (H is height of structure). For two different models, firstly, the Mode-Superposition Method for linear computational methods used within the scope of strength-based design is performed. In order to determinate more accurately the behavior of tall buildings, as in the earthquake regulations of other developed countries, the TBEC-2019 advises a nonlinear deformation-based design approach. In addition, the nonlinear time history analyses of these buildings were performed. As a result of these analyzes, it was determined whether the two models examined were within the targeted performance effects or not. In the model having support braced system, stiffness and shear forces in shear walls were increased. Thus, displacements, relative story drift, plastic rotations and bending moments of shear walls were decreased.


Sign in / Sign up

Export Citation Format

Share Document