Photoinduced perithecial formation by Nectria haematococca on media containing either L-tyrosine; L-phenylalanine; or D-glucose + NaNO3 as sole carbon and nitrogen sources

1969 ◽  
Vol 15 (8) ◽  
pp. 863-868 ◽  
Author(s):  
C. R. Curtis

A homothallic isolate of Fusarium solani produced red perithecia when illuminated and grown on a simple basal medium containing L-tyrosine; L-phenylalanine; or D-glucose + NaNO3 as a sole carbon and nitrogen source. Few or no perithecia formed in darkness on these media. Quantitative comparisons of perithecial formation in illuminated treatments indicated that L-tyrosine was a significantly better sole source of carbon and nitrogen than either L-phenylalanine or D-glucose + NaNO3. There was no significant difference between the responses on media containing L-phenylalanine and D-glucose + NaNO3. If dark-grown treatments were subsequently illuminated, perithecia formed on media containing L-tyrosine and D-glucose + NaNO3 but not on L-phenylalanine. The initial pH of the medium containing L-tyrosine did not seem to affect the fruiting response in illuminated cultures. A reduction in the amount of L-tyrosine in the basal medium resulted in a corresponding decrease in perithecial formation.The results are discussed in connection with a possible relationship of sexual reproduction, the light requirement, and tyrosine metabolism.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Alapati Kavitha ◽  
Muvva Vijayalakshmi

An enzyme-based drug, L-asparaginase, was produced byNocardia levisMK-VL_113 isolated from laterite soils of Guntur region. Cultural parameters affecting the production of L-asparaginase by the strain were optimized. Maximal yields of L-asparaginase were recorded from 3-day-old culture grown in modified asparagine-glycerol salts broth with initial pH 7.0 at temperature30∘C. Glycerol (2%) and yeast extract (1.5%) served as good carbon and nitrogen sources for L-asparaginase production, respectively. Cell-disrupting agents like EDTA slightly enhanced the productivity of L-asparaginase. Ours is the first paper on the production of L-asparaginase byN. levis.


2018 ◽  
Vol 44 (2) ◽  
pp. 285-292
Author(s):  
Sereen Gul ◽  
Mujeeb Ur Rahman ◽  
Mohammad Ajmal ◽  
Abdul Kabir Khan Achakzai ◽  
Asim Iqbal

The effects of various carbon and nitrogen sources were evaluated on production of proteases by Bacillus subtilis IC-5. Both type and concentration of carbon and nitrogen sources influenced the production of proteases. Among the carbon sources glucose was found to be the most effective. It gave maximum production at 2% w/v concentration i.e., 1875 and 950 U/ml, alkaline and neutral protease, respectively. The response of Bacillus subtilis IC-5 towards synthesis and excretion of enzymes varied with the type of nitrogen sources. The addition of organic nitrogen sources to basal medium repressed the synthesis of proteases while the addition of inorganic nitrogen source such as sodium nitrate was found to be the best stimulating for alkaline and neutral protease synthesis. Sodium nitrate enhanced the production up to 62.40 and 10.52% of alkaline and neutral protease, respectively against w.r.t. control.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Zahra Ajdari ◽  
Afshin Ebrahimpour ◽  
Musaalbakri Abdul Manan ◽  
Muhajir Hamid ◽  
Rosfarizan Mohamad ◽  
...  

This paper describes the nutritional requirements for the improvement of growth and sporulation of several strains ofMonascus purpureuson solid state cultivation. The findings revealed that glucose enhanced growth of allM. purpureusstrains tested but inhibited the sporulation rate. On the other hand, sucrose induced sporulation but inhibited production of cell mass. A combination of glucose and sucrose greatly enhanced sporulation and cell mass production ofM. purpureus. Although growth and sporulation rate were related to the ratio of carbon to nitrogen (C/N ratio), the types and concentrations of carbon and nitrogen sources also greatly influenced the growth kinetics. Among the media tested, Hiroi-PDA medium was the most preferred medium for allM. purpureusstrains tested for the enhancement of radial growth rate, sporulation, and cell production. Hence, Hiroi-PDA could be suggested as the generic basal medium for the cultivation ofM. purpureus. However, individual medium optimization is required for significant enhancement in growth and sporulation of each strain ofM. purpureus.


1967 ◽  
Vol 13 (4) ◽  
pp. 351-360 ◽  
Author(s):  
K. K. Al-Hassan ◽  
C. L. Fergus

Stilbella thermophila Fergus was grown on a chemically denned medium of D-glucose, KNO3, MgSO4, KH2PO4, agar, and microelements to determine the effect of environment and nutrition on growth and synnemata production. An exogenous supply of thiamine stimulated growth markedly on pyridine-purified agar, but both thiamine and biotin were required for synnemata to form. Pyrimidine was the effective moiety, not thiazole. S. thermophila grew on a large number of carbon and nitrogen compounds substituted singly into the basal medium, but synnemata formed on less than half of such media. Sucrose did not inhibit synnemata formation with glucose present, but no synnemata formed with sucrose in the medium even with a number of different nitrogen sources. Synnemata production followed chance mold contamination on a few of the media that normally did not allow their production. The carbon–nitrogen ratio significantly affected synnemata formation. So did pH, concentration of phosphate buffer, and temperature. At suboptimal temperatures, reduced synnemata, or only loose bundles of conidiophores, formed. Light was not required for synnemata initiation nor for maturation. Synnemata formation occurred over a narrower range of temperature, pH, vitamin concentration, nutrient concentration, and nutrient spectrum (carbon and nitrogen sources) than did mycelial growth.


1956 ◽  
Vol 2 (7) ◽  
pp. 747-756 ◽  
Author(s):  
Robert Rabin ◽  
Leonard N. Zimmerman

Some nutritive aspects of proteinase biosynthesis by non-proliferating cells of Streptococcus liquefaciens, strain 31, were investigated by substituting constituents in a basal medium containing casein, lactose, purines, pyrimidines, vitamins, and salts. The casein of the medium could be replaced by a mixture of 12 "essential" amino acids (glutamic acid, histidine, valine, serine, methionine, leucine, isoleucine, arginine, cystine, lysine, tryptophane, and threonine), thus demonstrating that proteinase synthesis can occur in a medium devoid of protein. Proteinase biosynthesis appeared to depend upon an inordinately high concentration of arginine, required a fermentable carbohydrate, and occurred optimally at pH 6.3. Sodium fluoride and iodoacetate did not inhibit the proteinase activity but radically curbed its synthesis.


2021 ◽  
Vol 1 (1) ◽  
pp. 25-31
Author(s):  
Muhammadi Muhammadi ◽  
Shabina Shafiq

Production of polyhydroxyalkanoate (PHA) under optimum culture conditions using local cheap feedstocks is indispensable to overcome the current cost of PHA-based plastics. For this purpose, optimum culture conditions and cheap feedstocks were investigated to produce maximum yield of PHA in CMG1415. Maximum yield was obtained with sucrose or sugar beet as sole source of precursors for PHA in 8 days of incubation at 35 °C in a minimal medium adjusted at pH 7. Further, for maximum yield no mechanical shaking was needed. Local cheap feedstock such as sugar beet and molasses were found to play as significant carbon and nitrogen sources for maximum PHA yield.  Bacterial plastic produced under these low-labor-cost culture conditions may to reduce the present cost of degradable bioplastic and be much effective alternate of nondegradable varieties of synthetic plastic.


2019 ◽  
Vol 20 (17) ◽  
pp. 4100 ◽  
Author(s):  
Yuanchao Qian ◽  
Yu Sun ◽  
Lixia Zhong ◽  
Ningning Sun ◽  
Yifan Sheng ◽  
...  

Trichoderma reesei is a biotechnologically important filamentous fungus with the remarkable ability to secrete large amounts of enzymes, whose production is strongly affected by both the carbon and nitrogen sources. While the carbon metabolism regulators are extensively studied, the regulation of enzyme production by the nitrogen metabolism regulators is still poorly understood. In this study, the GATA transcription factor Are1, which is an orthologue of the Aspergillus global nitrogen regulator AREA, was identified and characterized for its functions in regulation of both protease and cellulase production in T. reesei. Deletion of the are1 gene abolished the capability to secrete proteases, and complementation of the are1 gene rescued the ability to produce proteases. Quantitative RT-PCR analysis revealed that the transcripts of protease genes apw1 and apw2 were also significantly reduced in the Δare1 strain when grown in the medium with peptone as the nitrogen source. In addition, deletion of are1 resulted in decreased cellulase production in the presence of (NH4)2SO4. Consistent with the reduction of cellulase production, the transcription levels of the major cellulase genes, including cbh1, cbh2, egl1, and egl2, were dramatically decreased in Δare1. Sequence analysis showed that all promoter regions of the tested protease and cellulase genes contain the consensus GATA elements. However, the expression levels of the major cellulase transcription activator Xyr1 and the repressor Cre1 had no significant difference between Δare1 and the parental strain QM9414, indicating that the regulatory mechanism deserves further investigation. Taken together, these results demonstrate the important role of Are1 in the regulation of protease and cellulase production in T. reesei, although these processes depend on the kind of nitrogen sources. The findings in this study contribute to the understanding of the regulation network of carbon and nitrogen sources in filamentous fungi.


1978 ◽  
Vol 25 (2) ◽  
pp. 257-261 ◽  
Author(s):  
FAYE D. SCHWELITZ ◽  
PAULINE L. CISNEROS ◽  
JULIA A. JAGIELO ◽  
JEFFREY L. COMER ◽  
KEVIN A. BUTTERFIED

Sign in / Sign up

Export Citation Format

Share Document