Germ tube induction in Candida albicans

1980 ◽  
Vol 26 (1) ◽  
pp. 21-26 ◽  
Author(s):  
M. G. Shepherd ◽  
Chiew Yoke Yin ◽  
S. P. Ram ◽  
P. A. Sullivan

A reproducible and simple system for the production of germ tubes from yeast cells of Candida albicans using glucose and glutamine as substrates has been described.During germ tube formation there was a doubling of the dry weight but the number of cells remained constant. Although the DNA content did not change for the first 4 h of germ tube formation, the RNA content more than doubled. The DNA and RNA content of C. albicans blastospores are 4.5 × 10−15 g per cell and 48 × 10−15 g per cell respectively.Nystatin, phenethyl alcohol, 2,4-dinitrophenol, azaserine, salicylhydroxamic acid, and 5-fluorocytosine were all effective inhibitors of germ tube formation. Cysteine, potassium cyanide, and polyoxin D did not prevent germination. The incorporation of both uracil and leucine occurred rapidly during germ tube formation. The inhibitors of RNA synthesis, actinomycin D, cordycepin, and daunomycin prevented germination and inhibited uracil incorporation. The translational inhibitors, trichodermin, aurin tricarboxylic acid, puromycin, and cyloheximide were effective in inhibiting both germ tube formation and leucine incorporation.

1983 ◽  
Vol 29 (11) ◽  
pp. 1514-1525 ◽  
Author(s):  
Patrick A. Sullivan ◽  
Chiew Yoke Yin ◽  
Christopher Molloy ◽  
Matthew D. Templeton ◽  
Maxwell G. Shepherd

The uptake of nutrients (glucose, glutamine, and N-acetylglucosamine), the intracellular concentrations of metabolites (glucose-6-phosphate, cyclic AMP, amino acids, trehalose, and glycogen) and cell wall composition were studied in Candida albicans. These analyses were carried out with exponential-phase, stationary-phase, and starved yeast cells, and during germ-tube formation. Germ tubes formed during a 3-h incubation of starved yeast cells (0.8 × 108 cells/mL) at 37 °C during which time the nutrients glucose plus glutamine or N-acetylglucosamine (2.5 mM of each) were completely utilized. Control incubations with these nutrients at 28 °C did not form germ tubes. Uptake of N-acetylglucosamine and glutamine was inhibited by cycloheximide which suggests that de novo protein synthesis was required for the induction of these uptake systems. The glucose-6-phosphate content varied from 0.4 nmol/mg dry weight for starved cells to 2–3 nmol/mg dry weight for growing yeast cells and germ tube forming cells. Trehalose content varied from 85 nmol/mg dry weight (growing yeast cells and germ tube forming cells) to 165 nmol/mg weight (stationary-phase cells). The glycogen content decreased during germ-tube formation (from 800 to 600 nmol glucose equivalent/mg dry weight) but increased (to 1000 nmol glucose equivalent/mg dry weight) in the control incubation of yeast cells. Cyclic AMP remained constant throughout germ-tube formation at 4–6 pmol/mg dry weight. The total amino acid pool was similar in exponential, starved, and germ tube forming cells but there were changes in the amounts of individual amino acids. The overall cell wall composition of yeast cells and germ tube forming cells were similar: lipid (2%, w/w); protein (3–6%), and carbohydrate (77–85%). The total carbohydrates were accounted for as the following fractions: alkali-soluble glucan (3–8%), mannan (20–23%), acid-soluble glucan (24–27%), and acid-insoluble glucan (18–26%). The relative amounts of the alkali-soluble and insoluble glucan changed during starvation of yeast cells, reinitiation of yeast-phase growth, and germ-tube formation. Analysis of the insoluble glucan fraction from cells labelled with [14C]glucose during germ-tube formation showed that the chitin content of the cell wall increased from 0.6% to 2.7% (w/w).


1990 ◽  
Vol 36 (4) ◽  
pp. 249-253 ◽  
Author(s):  
Ruth C. Mock ◽  
Jordan H. Pollack ◽  
Tadayo Hashimoto

Candida albicans formed germ tubes when exposed to air containing 5 to 15% carbon dioxide (CO2). The CO2-mediated germ tube formation occurred optimally at 37 °C in a pH range of 5.5 to 6.5. No germ tubes were produced at 25 °C, even when the optimal concentration of CO2 (10%) was present in the environment. The requirement of CO2 for germ tube formation could be partially substituted by sodium bicarbonate but not by N2. Carbon dioxide was required to be present throughout the entire course of germ tube emergence suggesting that its role is not limited to an initial triggering of morphogenic change. We suggest that carbon dioxide may be a common effector responsible for the germ tube promoting activity of certain chemical inducers for C. albicans. Key words: Candida albican germ tubes, CO2-induced germ tube formation, endotrophic germ tube formation.


1981 ◽  
Vol 27 (6) ◽  
pp. 580-585 ◽  
Author(s):  
Louise A. Brown ◽  
W. LaJean Chaffin

Changes in the identity and quantity of proteins synthesized during morphogenesis may result from alterations in gene expression in the dimorphic yeast Candida albicans. Stationary phase yeast cells, upon resuming growth at 25 °C, form budding yeast and at 37 °C form germ tubes. In order to identify proteins associated with morphogenesis, we compared cytoplasmic proteins synthesized during germ tube and bud formation. Proteins synthesized during this period were labeled at four intervals with either [3H]leucine or [35S]methionine and separated by two-dimensional polyacrylamide gel electrophoresis. This study shows that, of the 230 proteins resolved on each gel, 5 were specific to the yeast morphology and 2 proteins showed reduction in net synthesis in the mycelial phase. There were, however, no mycelium-specific proteins at any labeling period. The majority of proteins were common to both morphologies and showed no major shift in number during resumption of growth. The observations reported here suggest that differential gene expression occurs during morphogenesis of C. albicans.


1971 ◽  
Vol 17 (7) ◽  
pp. 851-856 ◽  
Author(s):  
D. N. Mardon ◽  
I. S. K. Hurst ◽  
E. Balish

Candida albicans formed germ tubes within 3 h at 37C in a glucose–salts–biotin (GSB) medium containing L-alpha-amino-n-butyric acid as the nitrogen source. Optimal germ-tube production was obtained when the inoculum was grown on Sabouraud dextrose agar. The GSB medium containing L-alpha-amino-n-butyric acid promoted germ-tube formation more effectively than GSB medium plus gamma-amino-butyric acid or Sabouraud dextrose broth.Carbon-14 incorporation studies revealed that during germ-tube formation (0–4 h) the 3 carbon of alpha-amino-n-butyric acid was incorporated intracellularly to a greater extent than the 1 carbon. However, during blastospore formation (5–16 h), this difference was less pronounced.When six other Candida species were grown in GSB plus L-alpha-amino-n-butyric acid medium, few germ tubes were observed with the exception of one Candida stellatoidea strain. However, even this strain of C. stellatoidea produced far fewer germ tubes in this minimal culture medium than any strain of C. albicans tested.


Microbiology ◽  
2005 ◽  
Vol 151 (7) ◽  
pp. 2223-2232 ◽  
Author(s):  
Nozomu Hanaoka ◽  
Takashi Umeyama ◽  
Keigo Ueno ◽  
Kenji Ueda ◽  
Teruhiko Beppu ◽  
...  

In response to stimulants, such as serum, the yeast cells of the opportunistic fungal pathogen Candida albicans form germ tubes, which develop into hyphae. Yvh1p, one of the 29 protein phosphatases encoded in the C. albicans genome, has 45 % identity with the dual-specific phosphatase Yvh1p of the model yeast Saccharomyces cerevisiae. In this study, Yvh1p expression was not observed during the initial step of germ tube formation, although Yvh1p was expressed constitutively in cell cycle progression of yeast or hyphal cells. In an attempt to analyse the function of Yvh1p phosphatase, the complete ORFs of both alleles were deleted by replacement with hph200–URA3–hph200 and ARG4. Although YVH1 has nine single-nucleotide polymorphisms in its coding sequence, both YVH1 alleles were able to complement the YVH1 gene disruptant. The vegetative growth of Δyvh1 was significantly slower than the wild-type. The hyphal growth of Δyvh1 on agar, or in a liquid medium, was also slower than the wild-type because of the delay in nuclear division and septum formation, although germ tube formation was similar between the wild-type and the disruptant. Despite the slow hyphal growth, the expression of several hypha-specific genes in Δyvh1 was not delayed or repressed compared with that of the wild-type. Infection studies using mouse models revealed that the virulence of Δyvh1 was less than that of the wild-type. Thus, YVH1 contributes to normal vegetative yeast or hyphal cell cycle progression and pathogenicity, but not to germ tube formation.


2009 ◽  
Vol 77 (4) ◽  
pp. 1596-1605 ◽  
Author(s):  
Suman Ghosh ◽  
Dhammika H. M. L. P. Navarathna ◽  
David D. Roberts ◽  
Jake T. Cooper ◽  
Audrey L. Atkin ◽  
...  

ABSTRACT The opportunistic fungal pathogen Candida albicans is a part of the normal flora but it also causes systemic candidiasis if it reaches the bloodstream. Upon being phagocytized by macrophages, an important component of innate immunity, C. albicans rapidly upregulates a set of arginine biosynthetic genes. Arginine, urea, and CO2 induced hyphae in a density-dependent manner in wild-type, cph1/cph1, and rim101/rim101 strains but not in efg1/efg1 or cph1/cph1 efg1/efg1 strains. Arginase (Car1p) converts arginine to urea, which in turn is degraded by urea amidolyase (Dur1,2p) to produce CO2, a signal for hyphal switching. We used a dur1,2/dur1,2 mutant (KWN6) and the complemented strain, KWN8 (dur1,2/dur1,2::DUR1,2/DUR1,2) to study germ tube formation. KWN6 could not make germ tubes in the presence of arginine or urea but did in the presence of 5% CO2, which bypasses Dur1,2p. We also tested the effect of arginine on the interaction between the macrophage line RAW 264.7 and several strains of C. albicans. Arginine activated an Efg1p-dependent yeast-to-hypha switch, enabling wild-type C. albicans and KWN8 to escape from macrophages within 6 h, whereas KWN6 was defective in this regard. Additionally, two mutants that cannot synthesize arginine, BWP17 and SN152, were defective in making hyphae inside the macrophages, whereas the corresponding arginine prototrophs, DAY286 and SN87, formed germ tubes and escaped from macrophages. Therefore, metabolism of arginine by C. albicans controls hyphal switching and provides an important mechanism for escaping host defense.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Tapiwa Matare ◽  
Pasipanodya Nziramasanga ◽  
Lovemore Gwanzura ◽  
Valerie Robertson

Objective. The potential of NaHCO3 versus human serum to induce germ tube formation in Candida albicans was investigated. Specimens. A total of 100 isolates were obtained from oral swabs of patients presenting with thrush. Approval for the study was granted by the Joint Research Ethics Committee (JREC/23/08). Method. Confirmed C. albicans isolates by routine methods were tested for germ tube induction using 5 different concentrations of Tris-maleate buffered NaHCO3 and Tris-maleate buffer control. Standard control strains included were C. albicans (ATCC 10231) and C. krusei (ATCC 6258). Microculture was done in 20 μL inoculums on microscope slides for 3 hours at 37°C. The rate of germ tube formation at 10-minute intervals was determined on 100 isolates using the optimum 20 mM Tris-maleate buffered NaHCO3 concentration. Parallel germ tube formation using human serum was done in test tubes. Results. The optimum concentration of NaHCO3 in Tris-maleate buffer for germ tube induction was 20 mM for 67% of isolates. Only 21% of isolates formed germ tubes in Tris-maleate buffer control. There was no significant difference in induction between human serum and Tris-maleate buffered NaHCO3. Conclusion. Tris-maleate buffered NaHCO3 induced germ tube formation in C. albicans isolates at rates similar to human serum.


Microbiology ◽  
2004 ◽  
Vol 150 (9) ◽  
pp. 3041-3049 ◽  
Author(s):  
Debbie A. Hudson ◽  
Quentin L. Sciascia ◽  
Rebecca J. Sanders ◽  
Gillian E. Norris ◽  
Pat J. B. Edwards ◽  
...  

Yeast cells of Candida albicans are induced by serum at 37 °C to produce germ tubes, the first step in a transition from yeast to hyphal growth. Previously, it has been shown that the active component is not serum albumin but is present in the dialysable fraction of serum. In this study, serum induction of germ-tube formation is shown to occur even in the presence of added exogenous nitrogen sources and is therefore not signalled by nitrogen derepression. The active component in serum was purified by ion-exchange, reverse-phase and size-exclusion chromatography from the dialysable fraction of serum and was identified by NMR to be d-glucose. Enzymic destruction of glucose, using glucose oxidase, demonstrated that d-glucose was the only active component in these fractions. Induction of germ-tube formation by d-glucose required a temperature of 37 °C and the pH optimum was between pH 7·0 and 8·0. d-Glucose induced germ-tube formation in a panel of clinical isolates of C. albicans. Although d-glucose is the major inducer in serum, a second non-dialysable, trichloroacetic acid precipitable inducer is also present. However, whereas either 1·4 % (v/v) serum or an equivalent concentration of d-glucose induced 50 % germ-tube formation, the non-dialysable component required a 10-fold higher concentration to induce 50 % germ-tube formation. Serum is, therefore, the most effective induction medium for germ-tube formation because it is buffered at about pH 8·5 and contains two distinct inducers (glucose and a non-dialysable component), both active at this pH.


1982 ◽  
Vol 152 (2) ◽  
pp. 555-562
Author(s):  
E Mattia ◽  
G Carruba ◽  
L Angiolella ◽  
A Cassone

A number of strains of Candida albicans were tested for germ tube formation after induction by N-acetyl-D-glucosamine (GlcNAc) and other simple (proline, glucose plus glutamine) or complex (serum) compounds. A proportion of strains (high responders) were induced to form germ tubes evolving to true hyphae by GlcNAc alone or by proline or glucose plus glutamine mixture. The majority of strains were low responders because they could be induced only by serum or GlcNAc-serum medium. Two strains were found to be nonresponders: they grew as pseudohyphae in serum. Despite minor quantitative differences, all strains efficiently utilized GlcNAc for growth under the yeast form at 28 degrees C. They also had comparable active, inducible, and constitutive uptake systems for GlcNAc. During germ tube formation in GlcNAc, the inducible uptake system was modulated, as expected from induction and decay of GlcNAc kinase. Uranyl acetate, at a concentration of 0.01 mM, inhibited both GlcNAc uptake and germ tube formation and was reversed by phosphates. Germinating and nongerminating cells differed in the rapidity and extent of GlcNAc incorporation into acid-insoluble and alkali-acid-insoluble cell fractions. During germ tube formation induced by proline, GlcNAc was almost totally incorporated into the acid-insoluble fraction after 60 min. Moreover, hyphal development on induction by either GlcNAc or proline was characterized by an apparent "uncoupling" between protein and polysaccharide metabolism, the ratio between the two main cellular constituents falling from more than 1 to less than 0.5 after 270 min of development. The data suggest that utilization of the inducer for wall synthesis is a determinant of germ tube formation C. albicans but that the nature and extent of inducer uptake is not a key event for this phenomenon to occur.


Sign in / Sign up

Export Citation Format

Share Document