Changes in host cell membrane activities in response to adhesion of Neisseria gonorrhoeae

1986 ◽  
Vol 32 (2) ◽  
pp. 83-88 ◽  
Author(s):  
G. M. Wiseman ◽  
C. F. Martin

Physiological changes in host cell model membranes (intact human erythrocytes and ghosts) as a consequence of bacterial adhesion were studied with special reference to Neisseria gonorrhoeae. Membrane activities examined were transport of K+, Cl− ions, pyruvate kinase, Na–K-dependent ATPase, and cAMP. We found that K+ and Cl− transport were affected, more so in membranes with attached pilated (P+) organisms than in those with apilated (P−) isogenic strains. In N. gonorrhoeae and in several other species of gram-negative bacteria studied, hemagglutination titres were directly correlated with effects on anion transport, suggesting that perturbations in anion transport are an immediate result of adhesion. Of three P+ gonococcus strains tested, two depressed Na–K–ATPase activity in the membrane, indicating a possible effect on the Na–K pump. Pyruvate kinase activity associated with the membrane appeared to be stimulated by attached gonococci, again by P+ strains to higher levels than P− organisms. Clearly, some enzyme properties of host membranes are intrinsically affected by bacterial adhesion. Human polymorphonuclear neutrophils were also investigated, and with some exceptions, changes observed in leukocyte enzyme activities tended to parallel those in erythrocytes. Since hypochlorous acid production is considered to be an important microbicidal mechanism in neutrophils, interference with Cl− transport could jeopardize their role in host defense.

Microbiology ◽  
2009 ◽  
Vol 155 (12) ◽  
pp. 4084-4092 ◽  
Author(s):  
Dustin L. Higashi ◽  
Gina H. Zhang ◽  
Nicolas Biais ◽  
Lauren R. Myers ◽  
Nathan J. Weyand ◽  
...  

Early in infection, Neisseria gonorrhoeae can be observed to attach to the epithelial cell surface as microcolonies and induce dramatic changes to the host cell cortex. We tested the hypothesis that type IV pili (Tfp) retraction plays a role in the ultrastructure of both the host cell cortex and the bacterial microcolony. Using serial ultrathin sectioning, transmission electron microscopy and 3D reconstruction of serial 2D images, we have obtained what we believe to be the first 3D reconstructions of the N. gonorrhoeae–host cell interface, and determined the architecture of infected cell microvilli as well as the attached microcolony. Tfp connect both wild-type (wt) and Tfp retraction-deficient bacteria with each other, and with the host cell membrane. Tfp fibres and microvilli form a lattice in the wt microcolony and at its periphery. Wt microcolonies induce microvilli formation and increases of surface area, leading to an approximately ninefold increase in the surface area of the host cell membrane at the site of attachment. In contrast, Tfp retraction-deficient microcolonies do not affect these parameters. Wt microcolonies had a symmetrical, dome-shaped structure with a circular ‘footprint’, while Tfp retraction-deficient microcolonies were notably less symmetrical. These findings support a major role for Tfp retraction in microvilli and microcolony architecture. They are consistent with the biophysical attributes of Tfp and the effects of Tfp retraction on epithelial cell signalling.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 238
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Jacek Z. Kubiak ◽  
Rafik M. Ghobrial

Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein.


Author(s):  
Annette Brandel ◽  
Sahaja Aigal ◽  
Simon Lagies ◽  
Manuel Schlimpert ◽  
Ana Valeria Meléndez ◽  
...  

AbstractThe opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.


2021 ◽  
Author(s):  
Lucio Ayres Caldas ◽  
Fabiana Avila Carneiro ◽  
Fabio Luis Monteiro ◽  
Ingrid Augusto ◽  
Luiza Mendonça Higa ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Isabella Vlisidou ◽  
Alexia Hapeshi ◽  
Joseph RJ Healey ◽  
Katie Smart ◽  
Guowei Yang ◽  
...  

Photorhabdus is a highly effective insect pathogen and symbiont of insecticidal nematodes. To exert its potent insecticidal effects, it elaborates a myriad of toxins and small molecule effectors. Among these, the Photorhabdus Virulence Cassettes (PVCs) represent an elegant self-contained delivery mechanism for diverse protein toxins. Importantly, these self-contained nanosyringes overcome host cell membrane barriers, and act independently, at a distance from the bacteria itself. In this study, we demonstrate that Pnf, a PVC needle complex associated toxin, is a Rho-GTPase, which acts via deamidation and transglutamination to disrupt the cytoskeleton. TEM and Western blots have shown a physical association between Pnf and its cognate PVC delivery mechanism. We demonstrate that for Pnf to exert its effect, translocation across the cell membrane is absolutely essential.


2017 ◽  
Author(s):  
Rahul Chaudhari ◽  
Vishakha Dey ◽  
Aishwarya Narayan ◽  
Shobhona Sharma ◽  
Swati Patankar

The secretory pathway in Plasmodium falciparum has evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) and inhibitors of vesicular transport. As expected, the G protein dependent vesicular fusion inhibitor AlF4- and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPxGl and ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G-protein dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPxGl is localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPxGl. Second, trafficking of apicoplast luminal proteins appear to be independent of G-protein coupled vesicles.


2017 ◽  
Author(s):  
Rahul Chaudhari ◽  
Vishakha Dey ◽  
Aishwarya Narayan ◽  
Shobhona Sharma ◽  
Swati Patankar

The secretory pathway in Plasmodium falciparum has evolved to transport proteins to the host cell membrane and to an endosymbiotic organelle, the apicoplast. The latter can occur via the ER or the ER-Golgi route. Here, we study these three routes using proteins Erythrocyte Membrane Protein-1 (PfEMP1), Acyl Carrier Protein (ACP) and glutathione peroxidase-like thioredoxin peroxidase (PfTPxGl) and inhibitors of vesicular transport. As expected, the G protein dependent vesicular fusion inhibitor AlF4- and microtubule destabilizing drug vinblastine block the trafficking of PfEMP-1, a protein secreted to the host cell membrane. However, while both PfTPxGl and ACP are targeted to the apicoplast, only ACP trafficking remains unaffected by these treatments. This implies that G-protein dependent vesicles do not play a role in classical apicoplast protein targeting. Unlike the soluble protein ACP, we show that PfTPxGl is localized to the outermost membrane of the apicoplast. Thus, the parasite apicoplast acquires proteins via two different pathways: first, the vesicular trafficking pathway appears to handle not only secretory proteins, but an apicoplast membrane protein, PfTPxGl. Second, trafficking of apicoplast luminal proteins appear to be independent of G-protein coupled vesicles.


Sign in / Sign up

Export Citation Format

Share Document