California serogroup and Powassan virus infection of cats

1987 ◽  
Vol 33 (8) ◽  
pp. 693-697 ◽  
Author(s):  
D. P. Keane ◽  
J. Parent ◽  
P. B. Little

One hundred and seventy five sera from cats in Ontario, Canada, were tested for hemagglutination inhibition (HI) antibodies to three arboviruses; namely, Powassan (POW) of the Flavivirus serogroup, and Snowshoe hare (SSH) and Jamestown Canyon (JC) viruses of the California (CAL) serogroup. All sera were negative for antibodies to POW virus. Twelve cats possessed CAL serogroup antibodies including 3 with antibodies to SSH alone, 6 with antibodies to JC alone, and 3 with antibodies to both SSH and JC antigens. POW virus was inoculated into seven cats, one intracerebrally and six intravenously. Neurologic signs were not detected in any of the cats. Histologic lesions of a nonsuppurative encephalitis and encephalomyelitis were observed in the intracerebrally inoculated cat and in one of the intravenously inoculated cats, respectively. POW virus was not isolated from the brain or spinal cord of either of these two cats. HI antibodies were detected in the sera of all inoculated animals. HI antibodies were not detected in the CSF of any animal.

2002 ◽  
Vol 39 (2) ◽  
pp. 269-273 ◽  
Author(s):  
J. K. Lee ◽  
J. S. Park ◽  
J. H. Choi ◽  
B. K. Park ◽  
B. C. Lee ◽  
...  

Between August and September 2000, five 2–7-year-old cows in Korea exhibited neurologic signs and were diagnosed as infected with Akabane virus based on the results of histopathology, immunohistochemistry, serology, and reverse transcription polymerase chain reaction (RT-PCR) analysis. Immunohistochemistry and RT-PCR were equally effective and sensitive for diagnosing Akabane virus infection during the early stage of infection. Typical lymphohistiocytic inflammation characterized by perivascular mononuclear cell infiltration, gliosis, neuronophagia, and neuronal loss was noted in the brain and the ventral horn gray matter of the spinal cord. The lesions in the brain were most prominent in the pons and medulla oblongata. Akabane virus antigen was detected in the brain and spinal cord, mainly in degenerating neurons and glial cells. RTPCR analysis revealed a target band of expected size in four cows. This is the first report on an outbreak of natural Akabane virus infection in adult cattle.


1974 ◽  
Vol 11 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Jill Beech ◽  
D. C. Dodd

Eight horses with progressive neurologic signs had encephalomyelitis associated with toxoplasma-like protozoan bodies. There were scattered hemorrhagic, malacic lesions in white and grey matter in the brain and spinal cord. Microscopically there was malacia, mononuclear cell infiltration, especially perivascularly, gliosis, and various degrees of necrosis and hemorrhage. Other tissues were normal, except for the lung of one horse that had focal bronchopneumonia. The cerebrospinal fluid did not contain measurable amounts of IgM, IgG, or IgA. Serum from one horse was negative at 1:64 by the hemagglutination-inhibition test for toxoplasma antibodies.


2001 ◽  
Vol 75 (16) ◽  
pp. 7494-7505 ◽  
Author(s):  
Ikuo Tsunoda ◽  
Yoshiaki Wada ◽  
Jane E. Libbey ◽  
Thomas S. Cannon ◽  
Frank G. Whitby ◽  
...  

ABSTRACT Theiler's murine encephalomyelitis virus (TMEV) is divided into two subgroups based on neurovirulence. During the acute phase, DA virus infects cells in the gray matter of the central nervous system (CNS). Throughout the chronic phase, DA virus infects glial cells in the white matter, causing demyelinating disease. Although GDVII virus also infects neurons in the gray matter, infected mice developed a severe polioencephalomyelitis, and no virus is detected in the white matter or other areas in the CNS in rare survivors. Several sequence differences between the two viruses are located in VP2 puff B and VP1 loop II, which are located near each other, close to the proposed receptor binding site. We constructed a DA virus mutant, DApBL2M, which has the VP1 loop II of GDVII virus and a mutation at position 171 in VP2 puff B. While DApBL2M virus replicated less efficiently than DA virus during the acute phase, DApBL2M-induced acute polioencephalitis was comparable to that in DA virus infection. Interestingly, during the chronic phase, DApBL2M caused prolonged gray matter disease in the brain without white matter involvement in the spinal cord. This is opposite what is observed during wild-type DA virus infection. Our study is the first to demonstrate that conformational differences via interaction of VP2 puff B and VP1 loop II between GDVII and DA viruses can play an important role in making the transition of infection from the gray matter in the brain to the spinal cord white matter during TMEV infection.


Viruses ◽  
2016 ◽  
Vol 8 (8) ◽  
pp. 220 ◽  
Author(s):  
Rodrigo Santos ◽  
Meghan Hermance ◽  
Benjamin Gelman ◽  
Saravanan Thangamani

2018 ◽  
Vol 23 (1) ◽  
pp. 10-13
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Injuries that affect the central nervous system (CNS) can be catastrophic because they involve the brain or spinal cord, and determining the underlying clinical cause of impairment is essential in using the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), in part because the AMA Guides addresses neurological impairment in several chapters. Unlike the musculoskeletal chapters, Chapter 13, The Central and Peripheral Nervous System, does not use grades, grade modifiers, and a net adjustment formula; rather the chapter uses an approach that is similar to that in prior editions of the AMA Guides. The following steps can be used to perform a CNS rating: 1) evaluate all four major categories of cerebral impairment, and choose the one that is most severe; 2) rate the single most severe cerebral impairment of the four major categories; 3) rate all other impairments that are due to neurogenic problems; and 4) combine the rating of the single most severe category of cerebral impairment with the ratings of all other impairments. Because some neurological dysfunctions are rated elsewhere in the AMA Guides, Sixth Edition, the evaluator may consult Table 13-1 to verify the appropriate chapter to use.


2002 ◽  
Vol 46 (8) ◽  
pp. 2420-2426 ◽  
Author(s):  
Karl V. Clemons ◽  
Raymond A. Sobel ◽  
Paul L. Williams ◽  
Demosthenes Pappagianis ◽  
David A. Stevens

ABSTRACT The efficacy of intravenously administered liposomal amphotericin B (AmBisome [AmBi]) for the treatment of experimental coccidioidal meningitis was compared with those of oral fluconazole (FLC) and intravenously administered conventional amphotericin B (AMB). Male New Zealand White rabbits were infected by intracisternal inoculation of arthroconidia of Coccidioides immitis. Starting 5 days postinfection, animals received one of the following: 5% dextrose water diluent; AMB given at 1 mg/kg of body weight; AmBi given at 7.5, 15, or 22.5 mg/kg intravenously three times per week for 3 weeks; or oral FLC given at 80 mg/kg for 19 days. One week after the cessation of therapy, all survivors were euthanatized, the numbers of CFU remaining in the spinal cord and brain were determined, and histological analyses were performed. All AmBi-, FLC-, or AMB-treated animals survived and had prolonged lengths of survival compared with those for the controls (P < 0.0001). Treated groups had significantly lower numbers of white blood cells and significantly lower protein concentrations in the cerebrospinal fluid compared with those for the controls (P < 0.01 to 0.0005) and had fewer clinical signs of infection (e.g., weight loss, elevated temperature, and neurological abnormalities including motor abnormalities). The mean histological scores for AmBi-treated rabbits were lower than those for FLC-treated and control rabbits (P < 0.016 and 0.0005, respectively); the scores for AMB-treated animals were lower than those for the controls (P < 0.0005) but were similar to those for FLC-treated rabbits. All regimens reduced the numbers of CFU in the brain and spinal cord compared with those for the controls (P ≤0.0005). AmBi-treated animals had 3- to 11-fold lower numbers of CFU than FLC-treated rabbits and 6- to 35-fold lower numbers of CFU than AmB-treated rabbits. Three of eight animals given 15 mg of AmBi per kg had no detectable infection in either tissue, whereas other doses of AmBi or FLC cleared either the brain or the spinal cord of infection in fewer rabbits. In addition, clearance of the infection from both tissues was achieved in none of the rabbits, and neither tissue was cleared of infection in AMB-treated animals. Overall, these data indicate that intravenously administered AmBi is superior to oral FLC or intravenous AMB and that FLC is better than AMB against experimental coccidioidal meningitis. These data indicate that AmBi may offer an improvement in the treatment of coccidioidal meningitis. Additional studies are warranted.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Ganchimeg Davaa ◽  
Jin Young Hong ◽  
Tae Uk Kim ◽  
Seong Jae Lee ◽  
Seo Young Kim ◽  
...  

Exercise training is a traditional method to maximize remaining function in patients with spinal cord injury (SCI), but the exact mechanism by which exercise promotes recovery after SCI has not been identified; whether exercise truly has a beneficial effect on SCI also remains unclear. Previously, we showed that epigenetic changes in the brain motor cortex occur after SCI and that a treatment leading to epigenetic modulation effectively promotes functional recovery after SCI. We aimed to determine how exercise induces functional improvement in rats subjected to SCI and whether epigenetic changes are engaged in the effects of exercise. A spinal cord contusion model was established in rats, which were then subjected to treadmill exercise for 12 weeks. We found that the size of the lesion cavity and the number of macrophages were decreased more in the exercise group than in the control group after 12 weeks of injury. Immunofluorescence and DNA dot blot analysis revealed that levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the brain motor cortex were increased after exercise. Accordingly, the expression of ten-eleven translocation (Tet) family members (Tet1, Tet2, and Tet3) in the brain motor cortex also elevated. However, no macrophage polarization was induced by exercise. Locomotor function, including Basso, Beattie, and Bresnahan (BBB) and ladder scores, also improved in the exercise group compared to the control group. We concluded that treadmill exercise facilitates functional recovery in rats with SCI, and mechanistically epigenetic changes in the brain motor cortex may contribute to exercise-induced improvements.


Sign in / Sign up

Export Citation Format

Share Document