Encephalomyelitis Associated with Akabane Virus Infection in Adult Cows

2002 ◽  
Vol 39 (2) ◽  
pp. 269-273 ◽  
Author(s):  
J. K. Lee ◽  
J. S. Park ◽  
J. H. Choi ◽  
B. K. Park ◽  
B. C. Lee ◽  
...  

Between August and September 2000, five 2–7-year-old cows in Korea exhibited neurologic signs and were diagnosed as infected with Akabane virus based on the results of histopathology, immunohistochemistry, serology, and reverse transcription polymerase chain reaction (RT-PCR) analysis. Immunohistochemistry and RT-PCR were equally effective and sensitive for diagnosing Akabane virus infection during the early stage of infection. Typical lymphohistiocytic inflammation characterized by perivascular mononuclear cell infiltration, gliosis, neuronophagia, and neuronal loss was noted in the brain and the ventral horn gray matter of the spinal cord. The lesions in the brain were most prominent in the pons and medulla oblongata. Akabane virus antigen was detected in the brain and spinal cord, mainly in degenerating neurons and glial cells. RTPCR analysis revealed a target band of expected size in four cows. This is the first report on an outbreak of natural Akabane virus infection in adult cattle.

Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2330-2341 ◽  
Author(s):  
Caroline Parmentier ◽  
Emilie Hameury ◽  
Christophe Dubessy ◽  
Feng B. Quan ◽  
Damien Habert ◽  
...  

The urotensin II (UII) family is currently known to consist of two paralogous peptides, namely UII and UII-related peptide (URP). In contrast to UII, which has been identified in all vertebrate classes so far, URP has only been characterized in tetrapods. We report here the occurrence of two distinct URP genes in teleosts, which we have named URP1 and URP2. Synteny analysis revealed that teleost URP1 and URP2 genes and tetrapod URP genes represent three distinct paralog genes that, together with the UII gene, probably arose from the two rounds of tetraploidization, which took place early in vertebrate evolution. The absence of URP in fish indicates that the corresponding gene has been lost in the teleost lineage, whereas it is likely that both the URP1 and URP2 genes have been lost in the tetrapod lineage. Quantitative RT-PCR analysis revealed that the URP2 gene is mainly expressed in the spinal cord and the brain in adult zebrafish. In situ hybridization experiments showed that in zebrafish embryos, URP2 mRNA-containing cells are located in the floor plate of the neural tube. In adult, URP2-expressing cells occur in close contact with the ventral side of the ependymal canal along the whole spinal cord, whereas in the brain, they are located below the fourth ventricle. These URP-expressing cells may correspond to cerebrospinal fluid-contacting neurons. In conclusion, our study reveals the occurrence of four distinct UII paralogous systems in vertebrates that may exert distinct functions, both in tetrapods and teleosts.


2001 ◽  
Vol 38 (2) ◽  
pp. 216-218 ◽  
Author(s):  
Y. Noda ◽  
H. Yokoyama ◽  
T. Katsuki ◽  
S. Kurashige ◽  
Y. Uchinuno ◽  
...  

Eight newborn calves showing ataxia were necropsied and examined histologically. Six of seven cerebrospinal fluid samples collected from these animals had neutralizing antibody for Akabane virus (AKV). All examined calves had nonsuppurative encephalomyelitis, localized mainly in the midbrain and spinal cord. Corresponding to the encephalitic lesion, AKV antigen was demonstrated in neuroglial cells in the brain stem and neuronal cells in the ventral horn of the spinal cord. This is the first study to demonstrate AKV antigen by immunohistochemistry in naturally infected newborn calves.


2020 ◽  
Vol 16 (3) ◽  
pp. 364-372 ◽  
Author(s):  
Hashim Alhussain ◽  
Robin Augustine ◽  
Essraa A. Hussein ◽  
Ishita Gupta ◽  
Anwarul Hasan ◽  
...  

MXene (Ti3C2Tx), as a novel 2D material, has produced a great interest due to its promising properties in biomedical applications, nevertheless, there is a lack of studies dedicated to investigate the possible toxic effect of MXene in embryos. Herein, we aim to scrutinize the potential toxicity of MXene nanosheets on the early stage of the embryo as well as angiogenesis. Avian embryos at 3 and 5 days of incubation were used as an experimental model in this investigation. Our findings reveal that MXene may produce adverse effect on the early stage of embryogenesis as ∼46% of MXene-exposed embryos died during 1–5 days after exposure. We also found that MXene at tested concentration inhibits angiogenesis of the chorioallantoic membrane of the embryo after 5 days of incubation. More significantly, RT-PCR analysis of seven genes, which are key regulators of cell proliferation, survival, cell death and angiogenesis, revealed that these genes were deregulated in brain, heart and liver tissues from MXene-treated embryos in comparison with their matched controls. Our study clearly suggests that MXene at studied concentration might induce a toxic effect on the early stage of embryogenesis; nevertheless, more investigations are necessary to understand the effect at low concentrations and elucidate its mechanism at the early stage of normal development.


2006 ◽  
Vol 80 (19) ◽  
pp. 9414-9423 ◽  
Author(s):  
Anne M. Gussow ◽  
Nicole V. Giordani ◽  
Robert K. Tran ◽  
Yumi Imai ◽  
Dacia L. Kwiatkowski ◽  
...  

ABSTRACT To study the regulation of herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) expression and processing in the absence of other cis and trans viral functions, a transgenic mouse containing the region encompassing the LAT promoter (LAP1) and the LAT 5′ exon through the 2.0-kb intron was created. LAT expression was detectable by reverse transcriptase PCR (RT-PCR) in a number of tissues, including the dorsal root ganglia (DRG), trigeminal ganglia (TG), brain, skin, liver, and kidney. However, when the accumulation of the 2.0-kb LAT intron was analyzed at the cellular level by in situ hybridization, little or no detectable accumulation was observed in the brain, spinal cord, kidney, or foot, although the 2.0-kb LAT intron was detected at high levels (over 90% of neurons) in the DRG and TG. Northern blot analysis detected the stable 2.0-kb LAT intron only in the sensory ganglia. When relative amounts of the spliced and unspliced LAT within the brain, liver, kidney, spinal cord, TG, and DRG were analyzed by real-time RT-PCR, splicing of the 2.0-kb LAT intron was significantly more efficient in the sensory ganglia than in other tissues. Finally, infection of both transgenic mice and nontransgenic littermates with HSV-1 revealed no differences in lytic replication, establishment of latency, or reactivation, suggesting that expression of the LAT transgene in trans has no significant effect on those functions. Taken together, these data indicate that the regulation of expression and processing of LAT RNA within the mouse is highly cell-type specific and occurs in the absence of other viral cis- and trans-acting factors.


2016 ◽  
Author(s):  
Chengpei Zhu ◽  
Yanling Lv ◽  
Liangcai Wu ◽  
Jinxia Guan ◽  
Xue Bai ◽  
...  

AbstractMost hepatocellular carcinoma (HCC) patients are diagnosed at advanced stages and suffer limited treatment options. Challenges in early stage diagnosis may be due to the genetic complexity of HCC. Gene fusion plays a critical function in tumorigenesis and cancer progression in multiple cancers, yet the identities of fusion genes as potential diagnostic markers in HCC have not been investigated.Paired-end RNA sequencing was performed on noncancerous and cancerous lesions in two representative HBV-HCC patients. Potential fusion genes were identified by STAR-Fusion in STAR software and validated by four publicly available RNA-seq datasets. Fourteen pairs of frozen HBV-related HCC samples and adjacent non-tumor liver tissues were examined by RT-PCR analysis for gene fusion expression.We identified 2,354 different gene fusions in the two HBV-HCC patients. Validation analysis against the four RNA-seq datasets revealed only 1.8% (43/2,354) as recurrent fusions that were supported by public datasets. Comparison with four fusion databases demonstrated that three (HLA-DPB2-HLA-DRB1, CDH23-HLA-DPB1, and C15orf57-CBX3) out of 43 recurrent gene fusions were annotated as disease-related fusion events. Nineteen were novel recurrent fusions not previously annotated to diseases, including DCUN1D3-GSG1L and SERPINA5-SERPINA9. RT-PCR and Sanger sequencing of 14 pairs of HBV-related HCC samples confirmed expression of six of the new fusions, including RP11-476K15.1-CTD-2015H3.2.Our study provides new insights into gene fusions in HCC and could contribute to the development of anti-HCC therapy. RP11–476K15.1-CTD–2015H3.2 may serve as a new therapeutic biomarker in HCC.


2009 ◽  
Vol 96 (3) ◽  
pp. 267a-268a
Author(s):  
Takeharu Kawano ◽  
Nicole M. Jones ◽  
Christina V. Floreani ◽  
Abla M. Albsoul-Younes ◽  
Pawinee Yongsatirachot ◽  
...  

2014 ◽  
Vol 92 (9) ◽  
pp. 789-796 ◽  
Author(s):  
Hiroyasu Sakai ◽  
Ken Sato ◽  
Yuki Kai ◽  
Tetsuro Shoji ◽  
Satoshi Hasegawa ◽  
...  

Aquaporins (AQPs) are a family of water-transporting proteins that are selectively expressed in epithelial, endothelial, and many other cell types of various tissues, where they play important physiological functions. However, the accurate distribution of AQP gene expression has not yet been examined in various tissues of the mouse. We first evaluated the tissue distribution of AQP gene expression using tongue, nasal epithelium, bronchus, trachea, lung, esophagus, stomach, ileum, transverse colon, liver, pancreas, whole blood, thigh muscle, spinal cord, brain, thoracic aorta, heart, kidney, thymus, spleen, skin, eye, and testis of the mouse. Furthermore, for a quantitative analysis, we selected appropriate reference genes for normalized qRT-PCR data in various tissues. The stability of the reference genes was assessed using NormFinder. The stably expressed genes identified in the present study were 18s rRNA. When 18s rRNA was used, as the best reference gene in the present study, the genes for AQPs 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, and 12 were notably expressed in the eye, lung, testis, eye, spinal cord, trachea, kidney, testis, testis, testis, testis, and pancreas. These results, regarding the distribution of AQPs, suggest that AQPs may be involved in various physiological and pathophysiological processes.


1987 ◽  
Vol 33 (8) ◽  
pp. 693-697 ◽  
Author(s):  
D. P. Keane ◽  
J. Parent ◽  
P. B. Little

One hundred and seventy five sera from cats in Ontario, Canada, were tested for hemagglutination inhibition (HI) antibodies to three arboviruses; namely, Powassan (POW) of the Flavivirus serogroup, and Snowshoe hare (SSH) and Jamestown Canyon (JC) viruses of the California (CAL) serogroup. All sera were negative for antibodies to POW virus. Twelve cats possessed CAL serogroup antibodies including 3 with antibodies to SSH alone, 6 with antibodies to JC alone, and 3 with antibodies to both SSH and JC antigens. POW virus was inoculated into seven cats, one intracerebrally and six intravenously. Neurologic signs were not detected in any of the cats. Histologic lesions of a nonsuppurative encephalitis and encephalomyelitis were observed in the intracerebrally inoculated cat and in one of the intravenously inoculated cats, respectively. POW virus was not isolated from the brain or spinal cord of either of these two cats. HI antibodies were detected in the sera of all inoculated animals. HI antibodies were not detected in the CSF of any animal.


2020 ◽  
Vol 16 (6) ◽  
pp. 975-984
Author(s):  
Ghada G. Abdo ◽  
Hadeel Kheraldine ◽  
Ishita Gupta ◽  
Balsam Rizeq ◽  
Ahmed Elzatahry ◽  
...  

Implementation of carbon nanofibers (CNFs) in biomedical applications have successful outcomes, however, they are still considered as a potential hazard. We herein used avian embryos at 3 days and its chorioallantoic membrane (CAM) at 6 days of incubation to evaluate the impact of synthesized CNFs on the early stage of embryogenesis and angiogenesis. Our data point out that 50 μg/embryo concentration of CNFs provoke adverse effects as 75% of CNFs-exposed embryos die within 1–5 days after exposure compared with their matched controls. Furthermore, CNFs significantly inhibit angiogenesis of the CAM after 48-hours post-treatment. Additionally, RT-PCR analysis on seven key controller genes responsible for proliferation, survival, angiogenesis, and apoptosis showed that these genes are deregulated in brain, heart, and liver tissues of CNFs-exposed embryos compared to their matched control. Our investigation suggests that CNFs could have a toxic effect on the early stages of embryogenesis as well as angiogenesis. Nevertheless, further investigations are required to evaluate the effects of CNFs and elucidate their mechanism on the early stage of the normal development and human health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiromi H. Ueda ◽  
Kiyotada Naitou ◽  
Hiroyuki Nakamori ◽  
Kazuhiro Horii ◽  
Takahiko Shiina ◽  
...  

AbstractThe central nervous system is involved in regulation of defaecation. It is generally considered that supraspinal regions control the spinal defaecation centre. However, signal transmission from supraspinal regions to the spinal defaecation centre is still unclear. In this study, we investigated the regulatory role of an anorexigenic neuropeptide, α-MSH, in the spinal defaecation centre in rats. Intrathecal administration of α-MSH to the L6-S1 spinal cord enhanced colorectal motility. The prokinetic effect of α-MSH was abolished by severing the pelvic nerves. In contrast, severing the colonic nerves or thoracic cord transection at the T4 level had no impact on the effect of α-MSH. RT-PCR analysis revealed MC1R mRNA and MC4R mRNA expression in the L6-S1 spinal cord. Intrathecally administered MC1R agonists, BMS470539 and SHU9119, mimicked the α-MSH effect, but a MC4R agonist, THIQ, had no effect. These results demonstrate that α-MSH binds to MC1R in the spinal defaecation centre and activates pelvic nerves, leading to enhancement of colorectal motility. This is, to our knowledge, the first report showing the functional role of α-MSH in the spinal cord. In conclusion, our findings suggest that α-MSH is a candidate for a neurotransmitter from supraspinal regions to the spinal defaecation centre.


Sign in / Sign up

Export Citation Format

Share Document