The composition of the rhizosphere of chicory (Cichorium intybus L. var. foliosum Hegi)

1988 ◽  
Vol 34 (11) ◽  
pp. 1203-1208 ◽  
Author(s):  
M. F. Van Outryve ◽  
F. Gosselé ◽  
K. Kersters ◽  
J. Swings

The bacterial composition of the chicory rhizosphere (Cichorium intybus L. var. foliosum Hegi) was examined at four different growth stages in the field and also after 1 month storage of the roots. Based on protein fingerprints (SDS – polyacrylamide gel electrophoresis of total cell proteins) 233 isolates were grouped into 117 different groups. Forty percent of the isolates belonged to one of three groups: CH001, CH002, or CH213. Fingerprint type CH001 and CH002 were comprised of fluorescent pseudomonads. Fingerprint type CH213 was identified as Alcaligenes paradoxus. Fingerprint type CH213 strains, normally isolated early in the growing season, were inhibited in vitro by fingerprint type CH001 strains which appeared later in the growing season. Gram-negative isolates were predominant among the remaining fingerprint types: Pseudomonas paucimobilis, Xanthomonas maltophilia, Agrobacterium radiobacter, and Flavobacterium spp. A few Gram-positive isolates were found at the beginning of the growing season, i.e., Bacillus spp. and Streptomyces spp. The production of antifungal compounds was restricted to the 11 isolates among which were fluorescent Pseudomonas and Bacillus spp. Twenty-four fluorescent pseudomonad isolates from the rhizosphere were pathogenic on chicory leaves.


2007 ◽  
Vol 53 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Naveen Kumar Arora ◽  
Min Jeong Kim ◽  
Sun Chul Kang ◽  
Dinesh Kumar Maheshwari

A study was conducted to investigate the possibility of involvement of chitinase and β-1,3-glucanase of an antagonistic fluorescent Pseudomonas in growth suppression of phytopathogenic fungi, Phytophthora capsici and Rhizoctonia solani . Fluorescent Pseudomonas isolates GRC3 and GRC4 were screened for their antifungal potential against phytopathogenic fungi by using dual culture technique both on solid and liquid media. The percent inhibition was calculated. Various parameters were monitored for optimization of enzyme activities by fluorescent Pseudomonas GRC3. The involvement of chitinases, β-1,3-glucanases, and antifungal metabolites of nonenzymatic nature was correlated with the inhibition of P. capsici and R. solani. The results provide evidence for antibiosis as a mechanism for antagonism. The study also confirms that multiple mechanisms are involved in suppressing phytopathogens as evidenced by the involvement of chitinase and β-1,3-glucanase in inhibition of R. solani but not P. capsici by isolate GRC3.



2020 ◽  
Vol 3 (4) ◽  
pp. 286-293
Author(s):  
Nhut Nhu Nguyen ◽  
Nguyen Thi Ngoc Bich ◽  
Nguyen Thanh Truong ◽  
Vo Thi Xuyen

In recent years, Neoscytalidium dimidiatum has caused severe white spot disease in Pytaya, while no effective controls have been taken. In this study, two strains of N. dimidiatum NdGV and NdBT were obtained by isolation on water agar medium containing streptomycin, morphological tests, in vitro and in vivo pathogenical tests, and molecular biology tests by sequencing the genes ITS1 and ITS4. By using dual culture technique on potato-glucose agar medium, 100% of Trichoderma spp., 75% of Bacillus spp. and 20% of Streptomyces spp. were able to antagonize N. dimidiatum. The mean antagonistic effect with N. dimidiatum of Trichoderma spp. was higher than Bacillus spp. and the lowest was Streptomyces spp. 56.8%, 55.3% and 54.3% respectively. Especially 5 strains Trichoderma sp. 8.3.5, 8.3.7, 8.3.14, 8.3.19, and 8.3.20 had antagonistic effects of over 60%. The application potential of the 5 selected Trichoderma strains to control N. dimidiatum disease was further strengthened when their antagonistic effect was relatively stable on Pitaya juice agar medium while all Bacillus sp. and Streptomyces sp. were lost the ability to antagonize. It was noteworthy that four of the five strains of Trichoderma sp. were highly compatible, suggesting further studies are needed to apply their combined potency in enhancing the control of N. dimidiatum NdBT and NdGV on Pitaya.  



2020 ◽  
Vol 15 (3) ◽  
pp. 116
Author(s):  
CHRISNAWATI CHRISNAWATI ◽  
NASRUN NASRUN ◽  
TRIWIDODO ARWIYANTO

<p>ABSTRAK</p><p>Penelitian pengendalian penyakit layu bakteri nilam (Ralstoniasolanacearum) menggunakan Bacillus spp. dan Pseudomonad fluoresen dikebun petani nilam di Nagari Kajai, Pasaman Barat, Sumatera Barat telahdilakukan pada bulan Mei sampai November 2006. Penelitian ini bertujuanuntuk mendapatkan Bacillus spp. dan Pseudomonad fluoresen yangberpotensi untuk mengendalikan penyakit layu bakteri, dan meningkatkanpertumbuhan dan produksi nilam. Isolat Bacillus spp. Bc 26; Bc 80 dan Bc81 dan Pseudomonad fluoresen Pf 101; Pf146 dan Pf 170 dalam bentukkombinasi sebagai perlakuan yang diisolasi dari rizosfer nilam sehat, dandiseleksi berdasarkan kemampuan antagonistik terhadap R. solanacearumsecara in vitro di laboratorium dan in planta di rumah kaca KP BalittroLaing Solok. Isolat Bacillus spp. dan Pseudomonad fluoresen tersebutdiintroduksikan ke nilam dan dibiarkan selama 1 minggu sebelum ditanam.Tanaman yang telah diperlakukan dengan isolat Bacillus spp. danPseudomonad fluoresen ditanam pada kebun nilam yang telah terinfeksioleh bakteri patogen pada bulan Mei 2006. Perlakuan yang diuji disusundalam rancangan acak kelompok (RAK) dengan 3 ulangan. Parameterpengamatan adalah perkembangan penyakit layu bakteri meliputi masainkubasi dan intensitas penyakit, pertumbuhan dan produksi tanaman.Hasil penelitian menunjukkan bahwa kombinasi isolat Bacillus spp. Bc26dan Pseudomonad fluoresen Pf101 dapat mengendalikan penyakit layubakteri nilam lebih baik dibandingkan dengan isolat Bacillus spp. Bc 26dan Pseudomonad fluoresen Pf 101 secara terpisah dan isolat Bacillus spp.dan Pseudomonad fluoresen lainnya secara kombinasi dan terpisah.Kombinasi isolat Bacillus spp. Bc 26 dan Pseudomonad fluoresen Pf 101dapat menunda masa inkubasi gejala penyakit layu bakteri dari 21 harisetelah tanam (HST) menjadi 63 HST dan menekan intensitas penyakitlayu bakteri dari 63,90% menjadi 14,67%. Di samping itu kombinasikedua isolat tersebut dapat meningkatkan pertumbuhan tanaman sepertitinggi tanaman dari 35,53 cm menjadi 52,77 cm, jumlah daun total dari32,00 daun/tanaman menjadi 104,67 daun/tanaman, jumlah tunas dari10,33 tunas/tanaman menjadi 25,33 tunas/tanaman, berat basah daun dari16,20 g/petak menjadi 81,73 g/petak dan berat kering daun dari 5,44 g/petak menjadi 27,15 g/petak. Hasil percobaan ini menunjukkan bahwakombinasi isolat Bacillus spp. Bc 26 dan Pseudomonad fluoresen Pf 101mempunyai kemampuan tertinggi dalam mengendalikan penyakit layubakteri dan meningkatkan pertumbuhan tanaman nilam di lapang.</p><p>Kata kunci: Pogostemon  cablin  Benth,  penyakit  layu  bakteri,pengendalian, Bacillus spp., Pseudomonad fluorescent</p><p>ABSTRACT</p><p>Use of Bacillus sp. and Fluorecent Pseudomonad to Control Bacterial Wilt Disease on Patchouli Plant</p><p>The study of controlling bacterial wilt disease on patchouli plant(Ralstonia solacearum) with Bacillus spp. and Fluorescent pseudomonadwas carried out in farmer field in Kajai Village, West Pasaman, WestSumatra from May to November 2006. The aims of the study were to findout the effectiveness of Bacillus spp. and Fluorescent pseudomonad forcontrolling bacterial wilt disease, and increasing plant growth andproduction. Isolates of Bacillus spp. Bc 26, Bc 80, and Bc 81, andFluorescent pseudomonad Pf 101, Pf 146 and Pf 170 in combination orseperation as treatments were isolated from the rhizosphere of healthypatchouli plant, and selected based on antagonistic activity on R.solanacearum in vitro at the laboratory and in planta at green house of KP.Balittro Laing Solok. Isolates were inoculated on patchouli plant andremained for one week before planting. The plants, treated with Bacillusspp. and Fluorescent pseudomonad isolates, were planted in the fieldinfected with pathogen bacterial in May 2006. The treatment was arrangedin a randomized block design (RBD) with three replications. Theassessment parameters were incubation period, disease intensity, plantgrowth and production of patchouli plants. The results showed thatcombination of Bacillus spp. and Fluorescent pseudomonad could controlthe bacterial wilt disease better than Bacillus spp. Bc 26 and Fluorescentpseudomonad seperately, and the other Bacillus spp. and Fluorescentpseudomonad either in combination or separation. Combination ofBacillus spp. Bc26 and Fluorescent pseudomonad Pf 101 delayed theincubation period from 21 to 63 days and decreased the disease intensity ofbacterial wilt from 63.90 to 14.67%. In addition combination of bothisolates could affect the increase of plant growth, i.e plant height from35.53 to 52.77 cm, total numbers of leaves from 32.00 to 104 leaves/plant,budding numbers from 10.33 to 25.33 budding/plant, wet weight of leavesfrom 16.20 to 81.73 g/plot, and dry weight of leaves from 5.44 to 27.15g/plot. The results of the experiment showed that Bacillus spp. Bc 26 andFluorescent pseudomonad Pf 101 isolates have the highest activity oncontrolling the bacterial wilt disease and increase the growth of patchouliplant in the field.</p><p>Key words: Patchouli, Pogostemon cablin Benth, bacterial wilt disease,biological control, Bacillus spp., Fluorescent pseudomonad</p>



1994 ◽  
Vol 72 (06) ◽  
pp. 906-911 ◽  
Author(s):  
D C Rijken ◽  
E Groeneveld ◽  
M M Barrett-Bergshoeff

SummaryBM 06.022 is a non-glycosylated mutant of human tissue-type plasminogen activator (t-PA) comprising only the kringle-2 and proteinase domains. The in vivo half-life of BM 06.022 antigen is 4- to 5-fold longer than that of t-PA antigen. The in vitro half-life of the activity of BM 06.022 at therapeutic concentrations in plasma is shorter than that of t-PA. In this study the inactivation of BM 06.022 in plasma was further investigated.Varying concentrations of BM 06.022 were incubated in plasma for 0-150 min. Activity assays on serial samples showed a dose-dependent decline of BM 06.022 activity with a half-life from 72 min at 0.3 μg/ml to 38 min at 10 μg/ml. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) followed by fibrin autography showed the generation of several BM 06.022-complexes. These complexes could be completely precipitated with antibodies against Cl-inactivator, α2-antiplasmin and α1-antitrypsin.During the incubation of BM 06.022 in plasma, plasmin was generated dose-dependently as revealed by varying degrees of a2-anti-plasmin consumption and fibrinogen degradation. SDS-PAGE and immunoblotting showed that single-chain BM 06.022 was rapidly (i. e. within 45 min) converted into its two-chain form at concentrations of 5 μg/ml BM 06.022 and higher.In conclusion, BM 06.022 at therapeutic concentrations in plasma was inactivated by Cl-inactivator, a2-antiplasmin and a j-antitrypsin. The half-life of the activity decreased at increasing BM 06.022 concentrations, probably as a result of the generation of two-chain BM 06.022 which may be inactivated faster than the single-chain form.



1979 ◽  
Vol 42 (05) ◽  
pp. 1630-1633 ◽  
Author(s):  
A G Castle ◽  
N Crawford

SummaryBlood platelets contain microtubule proteins (tubulin and HMWs) which can be polymerised “in vitro” to form structures which resemble the microtubules seen in the intact platelet. Platelet tubulin is composed of two non-identical subunits a and p tubulin which have molecular weights around 55,000 but can be resolved in alkaline SDS-polyacrylamide gel electrophoresis. These subunits associate as dimers with sedimentation coefficients of about 5.7 S although it is not known whether the dimer protein is a homo- or hetero-dimer. The dimer tubulin binds the anti-mitotic drug colchicine and the kinetics of this binding are similar to those reported for neurotubulins. Platelet microtubules also contain two HMW proteins which appear to be essential and integral components of the fully assembled microtubule. These proteins have molecular weights greater than 200,000 daltons. Fluorescent labelled antibodies to platelet and brain tubulins stain long filamentous microtubular structures in bovine lens epithelial cells and this pattern of staining is prevented by exposing the cells to conditions known to cause depolymerisation of cell microtubules.



2017 ◽  
Vol 53 (No. 2) ◽  
pp. 78-84 ◽  
Author(s):  
Boukerma Lamia ◽  
Benchabane Messaoud ◽  
Charif Ahmed ◽  
Khélif Lakhdar

The potential of Pseudomonas fluorescens PF15 and Pseudomonas putida PP27 to protect tomato plants against Fusarium wilt under greenhouse conditions was evaluated. In vitro antagonism showed a significant inhibition of the pathogen growth (47%) revealed by PF15. However, PP27 presented a 10% rate of the mycelium inhibition. An in situ experiment was conducted with split-root design for induced systemic resistance (ISR) and without split-root design to measure both ISR and antagonistic activities. Fluorescent Pseudomonas revealed a delay in the onset of symptoms and slower kinetics of disease progression compared to the pathogen control. McKinney’s index, which measures the severity of the disease, was reduced by 37–72%, and the levels of infection (incidence) by 7–36%.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sujit Shah ◽  
Krishna Chand ◽  
Bhagwan Rekadwad ◽  
Yogesh S. Shouche ◽  
Jyotsna Sharma ◽  
...  

Abstract Background A plant growth-promoting endophytic bacterium PVL1 isolated from the leaf of Vanda cristata has the ability to colonize with roots of plants and protect the plant. PVL1 was isolated using laboratory synthetic media. 16S rRNA gene sequencing method has been employed for identification before and after root colonization ability. Results Original isolated and remunerated strain from colonized roots were identified as Bacillus spp. as per EzBiocloud database. The presence of bacteria in the root section of the plantlet was confirmed through Epifluorescence microscopy of colonized roots. The in-vitro plantlet colonized by PVL1 as well as DLMB attained higher growth than the control. PVL1 capable of producing plant beneficial phytohormone under in vitro cultivation. HPLC and GC-MS analysis suggest that colonized plants contain Indole Acetic Acid (IAA). The methanol extract of Bacillus spp., contains 0.015 μg in 1 μl concentration of IAA. PVL1 has the ability to produce antimicrobial compounds such as ethyl iso-allocholate, which exhibits immune restoring property. One-way ANOVA shows that results were statistically significant at P ≤ 0.05 level. Conclusions Hence, it has been concluded that Bacillus spp. PVL1 can promote plant growth through secretion of IAA during root colonization and ethyl iso-allocholate to protect plants from foreign infections. Thus, this study supports to support Koch’s postulates of bacteria establishment.



1984 ◽  
Vol 101 (1) ◽  
pp. 27-32 ◽  
Author(s):  
F. Mena ◽  
G. Martínez-Escalera ◽  
C. Clapp ◽  
C. E. Grosvenor

ABSTRACT Adenohypophysial prolactin of lactating rats was pulse-labelled by [3H]leucine injected i.v. at the time of removal of the pups. The [3H]prolactin concentration in the pituitary gland, analysed by polyacrylamide-gel electrophoresis, progressively fell as the time from labelling to removal of the pituitary gland increased from 8 to 24 h, which suggests that there was a loss of hormone as it aged within the gland. Suckling effectively provoked the depletion–transformation of total and [3H]prolactin (extracted at pH 7·2) when applied after 8 h but not when applied after either 16 or 24 h after removing the pups. In rats whose pups were removed for 8 h, suckling also depleted–transformed [3H]prolactin labelled 4 h, but not that labelled 1 h before suckling. The pituitary glands of other lactating rats were labelled with [3H]leucine injected i.v. at various times before removing the glands and incubating them in medium 199. The secretion into the medium of [3H]prolactin labelled either 4, 8, 16 or 24 h beforehand was maximal during the first 30 min then declined from 30 to 240 min of incubation. However, secretion of prolactin labelled 1 h and 10 min beforehand reached a maximum after 0·5–1 h and 2 h of incubation respectively, then remained constant during the remainder of the 4-h incubation period. The total 4-h secretion of [3H]prolactin was greatest (65% of preincubation concentration) from those glands labelled 4 h before in contrast to those labelled 10 min (15%) or 1 (38%), 8 (34%), 16 (18%) or 24 h (26%) before incubation. Taken together, these data suggest that prolactin synthesized 4 h earlier is more likely to be released in response to physiological stimuli than is more recently formed prolactin or prolactin which has remained in the pituitary gland for 16 h or longer. J. Endocr. (1984) 101, 27–32



1982 ◽  
Vol 2 (4) ◽  
pp. 412-425 ◽  
Author(s):  
S I Reed ◽  
J Ferguson ◽  
J C Groppe

The CDC28 gene was subcloned from a plasmid containing a 6.5-kilobase-pair segment of Saccharomyces cerevisiae DNA YRp7(CDC28-3) by partial digestion with Sau3A and insertion of the resulting fragments into the BamHI sites of YRp7 and pRC1. Recombinant plasmids were obtained containing inserts of 4.4 and 3.1 kilobase pairs which were capable of complementing a cdc28(ts) mutation. R-loop analysis indicated that each yeast insert contained two RNA coding regions of about 0.8 and 1.0 kilobase pairs, respectively. In vitro mutagenesis experiments suggested that the smaller coding region corresponded to the CDC28 gene. When cellular polyadenylic acid-containing RNA, separated by agarose gel electrophoresis after denaturation with glyoxal and transferred to nitrocellulose membrane, was reacted with labeled DNA from the smaller coding region, and RNA species of about 1 kilobase in length was detected. Presumably, the discrepancy in size between the R-loop and electrophoretic determinations is due to a segment of polyadenylic acid which is excluded from the R-loops. By using hybridization of the histone H2B mRNAs to an appropriate probe as a previously determined standards, it was possible to estimate the number of CDC28 mRNA copies per haploid cell as between 6 and 12 molecules. Hybrid release translation performed on the CDC29 mRNA directed the synthesis of a polypeptide of 27,000 daltons, as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. This polypeptide was not synthesized when mRNA prepared from a cdc28 nonsense mutant was translated in a parallel fashion. However, if the RNA from a cell containing the CDC28 gene on a plasmid maintained at a high copy number was translated, the amount of in vitro product was amplified fivefold.



Parasitology ◽  
1982 ◽  
Vol 84 (1) ◽  
pp. 65-82 ◽  
Author(s):  
D. W. Taylor ◽  
A. F. Butterworth

SUMMARYMonoclonal antibodies have been produced after fusion of NS-1 murine myeloma cells with spleen cells from mice immunized either by chronic primary infection or with irradiated cercariae: in both cases, animals were challenged with live cercariae 7 days before fusion. The initial cultures were screened for anti-schistosomular antibodies both by a radioimmunoassay with whole schistosomulum extracts and by immunofluorescence. There was no correlation between the two techniques and subsequent screening was carried out by immunofluorescence. Cloning was carried out in soft agar and 7 cloned cell lines, from 5 initial cultures, were selected for detailed study. Products of 6 of these 7 lines were monoclonal, as judged by isoelectricfocusing of [35S]methionine-labelled supernatant fluids, and their binding to live schistosomula was specific. None of the antibodies showed detectable activity in mediating eosinophil- or complement-dependent damage to schistosomula in vitro. However, 2 antibodies were successfully used to isolate surface proteins with an apparent molecular weight of 24000 on SDS-polyacrylamide gel electrophoresis.



Sign in / Sign up

Export Citation Format

Share Document