scholarly journals Isolate Neoscytalidium dimidiatum fungal pathogens from pytaya (Hylocereus undatus) and research controlling by microorganisms

2020 ◽  
Vol 3 (4) ◽  
pp. 286-293
Author(s):  
Nhut Nhu Nguyen ◽  
Nguyen Thi Ngoc Bich ◽  
Nguyen Thanh Truong ◽  
Vo Thi Xuyen

In recent years, Neoscytalidium dimidiatum has caused severe white spot disease in Pytaya, while no effective controls have been taken. In this study, two strains of N. dimidiatum NdGV and NdBT were obtained by isolation on water agar medium containing streptomycin, morphological tests, in vitro and in vivo pathogenical tests, and molecular biology tests by sequencing the genes ITS1 and ITS4. By using dual culture technique on potato-glucose agar medium, 100% of Trichoderma spp., 75% of Bacillus spp. and 20% of Streptomyces spp. were able to antagonize N. dimidiatum. The mean antagonistic effect with N. dimidiatum of Trichoderma spp. was higher than Bacillus spp. and the lowest was Streptomyces spp. 56.8%, 55.3% and 54.3% respectively. Especially 5 strains Trichoderma sp. 8.3.5, 8.3.7, 8.3.14, 8.3.19, and 8.3.20 had antagonistic effects of over 60%. The application potential of the 5 selected Trichoderma strains to control N. dimidiatum disease was further strengthened when their antagonistic effect was relatively stable on Pitaya juice agar medium while all Bacillus sp. and Streptomyces sp. were lost the ability to antagonize. It was noteworthy that four of the five strains of Trichoderma sp. were highly compatible, suggesting further studies are needed to apply their combined potency in enhancing the control of N. dimidiatum NdBT and NdGV on Pitaya.  

2016 ◽  
Vol 25 (4) ◽  
pp. 331 ◽  
Author(s):  
Mutia Erti Dwiastuti ◽  
Melisa N Fajri ◽  
Yunimar Yunimar

<p>Layu yang disebabkan oleh Fusarium spp. merupakan salah satu penyakit penting tanaman stroberi (Fragaria x ananassa<br />Dutch.) di daerah subtropika, yang dapat menggagalkan panen. Penelitian bertujuan untuk mempelajari potensi Trichoderma spp.<br />dalam mengendalikan Fusarium spp. Isolat Trichoderma spp. diisolasi dari rizosfer tanaman stroberi dan Fusarium spp. diisolasi<br />dari tanaman stroberi yang mengalami layu fusarium. Isolat cendawan dimurnikan, dikarakterisasi, dan dibandingkan dengan isolat<br />cendawan acuan. Uji antagonis dilakukan secara in vitro dan in vivo. Uji in vitro dilakukan dengan metode dual culture dan slide<br />culture. Uji in vivo dilakukan di rumah kasa menggunakan dua varietas stroberi, yaitu Santung serta California. Hasil penelitian <br />in vitro memperoleh dua jenis isolat cendawan antagonis, yaitu Trichoderma sp.1 dan Trichoderma sp.2, dan dua jenis cendawan <br />patogen Fusarium, yaitu Fusarium sp.1 dan Fusarium sp.2. Isolat Trichoderma sp.1 memiliki kemampuan antagonisme lebih tinggi<br />dibandingkan dengan isolat Trichoderma sp.2. Isolat Trichoderma sp.1 mampu menghambat pertumbuhan Fusarium sp.1 dan<br />Fusarium sp.2 secara berturut- turut, yaitu 49,7% dan 49,6%. Isolat Trichoderma sp.2 mampu menghambat pertumbuhan Fusarium<br />sp.1 dan Fusarium sp.2 lebih rendah, yaitu sebesar 45,8% dan 43,4%. Mekanisme antagonis yang terjadi antara cendawan antagonis<br />dan patogen pada uji in vitro, yaitu pembelitan dan intervensi hifa. Hasil pada uji in vivo pada perlakuan Trichoderma sebelum<br />Fusarium menunjukkan keefektifan pengendalian paling baik (41,72%) dibanding perlakuan lain. Varietas Santung lebih tahan<br />terhadap serangan patogen dibandingkan varietas California. Implikasi dari hasil penelitian ini adalah, agens hayati Trichoderma<br />spp. lebih optimal digunakan sebagai pencegahan (preventif) tanpa menunggu tanaman terinfeksi penyakit layu fusarium.</p>


Author(s):  
Ma. Ángeles Valencia de Ita ◽  
Jiménez Huerta Fátima ◽  
Conrado Parraguirre Lezama ◽  
Alfredo Báez Simón ◽  
Gerardo Landeta Cortés ◽  
...  

Diversity of the different types of chilies in Mexico has been scarcely studied, and a large variety have been found to be, such as Manzano chili. Root rot caused by oomycete Phytophthora capsici is a severe disease that affects Manzano chili production in Mexico, detracted from its production and quality. The use of biological control agents such as Trichodermanative’s species, represents an efficient alternative to reduce losses and control the disease. For this reason, the objective of the present investigation was to evaluate the antagonistic effect in vitro and in vivo of four native strains of Trichoderma spp., on Phytophthora capsici in seedlings of Manzano chili from Puebla-Mexico was evaluated. Dual culture technique was used to determine the percentage of inhibition of radial growth (PICR) of the PC-A strain of P. capsici. Analysis of the percentage of germination was also carried out, as well as the incidence of root rot at 20 days after inoculation with the pathogen (dai) in the nursery. T. harzianum strain presented the highest PICR (42.86%) of antagonistic level in vitro and class I in the Bell scale, in addition, it obtained 88% germination in the nursery and 10% mortality at 20 dai, higher than the other native strains of Trichoderma. The bio-controlling effect of strains of Trichoderma spp., offers an effective alternative for root necrosis caused by P. capsici in the cultivation of Manzano chili in Puebla-Mexico.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2018 ◽  
Vol 8 (2) ◽  
pp. 90-102
Author(s):  
Zee Kar Yan ◽  
Vu Thanh Tu Anh

Chilli is commonly used as spice in Malaysian culinary, principal ingredients in paste (sambal) and as the raw material in sauce industry. Anthracnose disease caused by Colletotrichum capsici is one of the major causes of economic loss to chilli production especially in Asia. Even a small lesion on chilli might affect the quality, thus the market value of the chilli. Disease symptoms caused by C. capsici include brown, circular and sunken lesion with concentric rings of black acervuli. Chemicals have been used to treat the chilli but they might cause environmental pollution, affect human health and lead to pathogen resistance to the chemicals. Therefore, an alternative method to chemical control is required. In this study, C. capsici was isolated from a naturally infected chilli fruit (Capsicum frutescens), and a species of Trichoderma was isolated from the rhizosphere of grasses. Pure cultures of both fungi were established then used in antagonism studies in in vitro and in vivo. Dual culture of pathogens and Trichoderma sp. indicated that Trichoderma sp. competed with C. capsici for space and nutrients, caused the loss of turgidity of the fungal hyphae, and reduced the fungal growth by producing volatile metabolites. Trichoderma sp. decreased disease severity on chilli artificially inoculated fruits up to 64% when Trichoderma mycelial plug was used and 55% when culture filtrate was applied. Field trials are recommended to examine the antagonism of Trichoderma sp. in real production conditions. Keywords: Anthracnose, biological control, Colletotrichum capsici, Trichoderma sp.


2014 ◽  
Vol 2 (2) ◽  
Author(s):  
Fikriyah Shofiah Mawaddah ◽  
Joko Prasetyo ◽  
Muhammad Nurdin

Antraknosa yang disebabkan oleh Colletotrichum gloeosporioides merupakan penyakit pascapanen penting pada buahbuahan. Penelitian ini bertujuan untuk mengetahui efektifitas kitosan dan Trichoderma sp. dalam menghambat pertumbuhan koloni jamur C. gloeosporioides secara in vitro dan mengetahui efektifitas kitosan dan Trichoderma sp. terhadap intensitas penyakit antraknosa yang disebabkan oleh C. gloeosporioides pada buah pisang cavendish. Penelitian dilakukan di Laboratorium Penyakit Tumbuhan, Fakultas Pertanian, Universitas Lampung dari bulan Mei 2013 sampai dengan September 2013. Percobaan ini disusun dalam rancangan acak lengkap (RAL) yang terdiri atas lima perlakuan dan lima ulangan, yaitu kontrol (P0), kitosan (P1), Trichoderma sp. (P2), kombinasi kitosan dan Trichoderma sp. (P3) dan fungisida mankozeb (P4). C. gloeosporioides diperoleh dari isolasi buah pisang yang bergejala antraknosa. Pengujian secara in vitro, perlakuan kitosan konsentrasi 0,75% dicampurkan ke dalam media potato sukrose agar, perlakuan Trichoderma sp. (dual culture method), perlakuan kombinasi kitosan dan Trichoderma sp. dengan mencampurkan kitosan pada media dan dikombinasikan dengan Trichoderma sp. (dual culture method) serta perlakuan fungisida mankozeb konsentrasi 0,1% dicampurkan ke dalam media. Metode tersebut juga digunakan untuk pengujian secara in vivo pada buah pisang. Hasil pengujian secara in vitro, perlakuan kitosan, Trichoderma sp. dan kombinasi kitosan dan Trichoderma sp. efektif menghambat pertumbuhan koloni jamur C. gloeosporioides. Pada uji in vivo, masing-masing perlakuan tidak efektif menghambat intensitas penyakit antraknosa.


2017 ◽  
Vol 47 (1) ◽  
pp. 102-109
Author(s):  
Alexandre Dinnys Roese ◽  
Gloria Soriano Vidal ◽  
Erica Camila Zielinski ◽  
Louise Larissa May De Mio

ABSTRACT Trichoderma is a biological control agent used to improve the resistance to diseases, which may also estimulate plant growth. Commercial products with Trichoderma are available in different countries, but most of them are based on conidial suspension. This study aimed at evaluating the efficiency of native Trichoderma populations collected from different production systems and applied to the soil by using two methods: conidial suspension and inoculated oat grains. The efficiency of native Trichoderma populations collected from conventional crop and agropastoral and agrosilvopastoral systems in a long-term field experiment was evaluated. The populations efficiencies were evaluated by in vivo tests that assessed the control of soybean damping-off caused by Rhizoctonia solani, plant height and soil colonization with the antagonist. In vitro tests, such as dual culture and assessment of volatile and non-volatile compounds, were conducted to study the mode of action of the populations. Some native Trichoderma populations were as efficient as those from a commercial product in all tests. Compared to conidial suspension, Trichoderma spp. inoculated through oat grains promoted a greater damping-off control, higher plants and more colony-forming units per gram of soil after 3 months of application. Native populations performed equally well or even better than the commercial strain, and the use of a substrate that supports the Trichoderma growth was more efficient than the conidial suspension method.


Nativa ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 233
Author(s):  
Carina Melo da Silva ◽  
Cássia Cristina Chaves Pinheiro ◽  
Ieda Alana Leite de Sousa ◽  
Paulo Manoel Ponte Lins ◽  
Gisele Barata da Silva ◽  
...  

O objetivo do trabalho foi avaliar o potencial de rizobactérias e Trichoderma spp. no controle biológico de Bursaphelenchus cocophilus. Foram avaliados 19 isolados de Pseudomonas spp. (P), 29 de Bacillus spp. (B) e 27 de Trichoderma spp. (T), obtidos de plantio comercial. Os isolados foram caracterizados quanto a produção de compostos bioquímicos. Foi avaliada a taxa de mortalidade de B. cocophilus in vitro e in vivo, neste último realizou-se também a quantificação das enzimas relacionadas à patogênese. Os isolados B14 e P41 proporcionaram 69% e 56% de taxa de mortalidade de nematoides, respectivamente e foram tanto proteolíticos como solubilizadores de fosfato. Os isolados T41 e T54 apresentaram 96% de mortalidade de B. cocophilus in vitro e foram produtores de quitinases, protease e sideróforos. No experimento in vivo, os isolados de rizobactérias B14, B23 e P23 promoveram maior taxa de mortalidade do B. cocophilus do que os demais tratamentos. As mudas de coqueiro inoculadas com o B. cocophilus apresentaram aumento nas atividades das enzimas peroxidases, quitinase e β-1,3-glucanases, quando comparadas com a testemunha (mudas não inoculadas). Os isolados B41, P14, T41 e T54 apresentaram-se como potenciais agentes de controle biológico do B. cocophilus.Palavras-chave: anel vermelho, antagonismo, nematoid. BIOLOGIC CONTROL OF Bursaphelenchus cocophilus WITH RHIZOBACTERIA AND Trichoderma isolates  ABSTRACT:The purpose of this study was to evaluate the potential of rhizobacteria Pseudomonas spp. and Bacillus spp. and Trichoderma spp. isolates on the biological control of the nematode Bursaphelenchus cocophilus. The potential biological control isolates (48 rhizobacteria and 27 Trichoderma spp.) were characterized biochemically. The biological control experiments were carried out "in vitro" and "in vivo", and in the later one, the mortality rate of the nematodes and the pathogenesis related enzymes were evaluated. Rhizobacterial isolates B14 and P41 provided a high nematode mortality rate (69% and 56%, respectively) and both were proteolytic and phosphate solubilizers. In the "in vivo" experiment, rhizobacterial isolates B14, B23 and P23 tested the highest mortality rates of B. cocophilus than the isolates of Trichoderma spp. and of the control as coconut saplings challenged with B. cocophilus showed indices higher in enzyme activities, peroxidases, chitinase and β-1,3-glucanases when compared to witness (seedling not inoculated). The isolates B41, P14, T41 and T54 were presented as potential biological control agents of B. cocophilus.Keywords: red ring, antagonism, nematode. DOI:   


el–Hayah ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 104-111
Author(s):  
Zahroul Afifah ◽  
Ulfah Utami

Background: An anthracnose disease caused by pathogenic fungal Colletotrichum capsici has been attacking the cayenne plants either harvested or has not been harvested. This disease must be handled appropriately and quickly because it can reduce the production of chili up to 90%. Recently, anthracnose disease prevention still use chemical fungicide that if applied for long time will cause new impact for environment. Objective: Trichoderma and Bacillus cereus endophytes may be used as antagonistic agents for C. capsici pathogens because they have various antibiotic compounds. Methods: This research uses experimental method. The stages of this study include sterilization of tools and materials, preparation of culture media of fungal and bacteria, rejuvenation of endophytic microbe culture Trichoderma sp. and Bacillus cereus, rejuvenation of  C. capsici pathogen, antagonistic test in vitro using dual culture method. Result and conclusion: The results of in vitro antagonistic tests showed that inhibition percentage of Trichoderma treatment (96%) and combination treatment Trichoderma and B. cereus (97%) is not significantly different. While in B. cereus treatment (11, 88%) significantly different with all of treatments. Endophytes are shown by its dominating growth in petri dishes than C. capsici pathogen or B. cereus endophytes. Furthermore,for endophytes Trichoderma sp continued on in vivo test because it was most effective.The result for incubation period is 3 days after inoculation compared with negative control 2 days. For disease incidence 100%, and for disease intensity that is 61,25% compared with negative control equal to 88,75%.


2016 ◽  
Vol 3 (1) ◽  
pp. 28
Author(s):  
Winda Nawfetrias ◽  
Eka Nurhangga ◽  
Sutardjo .

Cocoa black pod rot is caused by pathogenic fungi, Phytophtora palmivora, which decrease the cocoa production up to 90%. The use of biological control agents, Trichoderma spp., is one of the promising P. palmivora controllers since it is low-cost, easily found and safe for the environment. The aims of this research were to understand the compatibility, antagonistic and effectiveness of biofungicide containing active ingredient of Trichoderma spp. against P. palmivora in vitro and to test the effective concentration of biofungicide containing active ingredient of T. asperellum to control P. palmivora in vitro and in vivo. T. asperellum, T. harzianum, and T. viride were grown together on PDA medium to test their compatibility. Antagonistic and effectiveness test of Trichoderma spp. against P. palmivora were tested using the in vitro dual culture method. The effectiveness of T. asperellum biofungicide was tested in vivo on cocoa pot. Compatibility test showed that all three species were compatible and the best effectiveness showed by the combination of T. asperellum and T. viride. The result also showed that T. asperellum biofungicide had an ability to inhibit P. palmivora.   Keywords: Trichoderma spp., effectivity, compatibility, antagonistic, biofungicide  ABSTRAKPenyakit busuk buah kakao disebabkan cendawan patogen Phytophtora palmivora, yang dapat menurunkan produksi kakao sampai 90%. Penggunaan agensia pengendali hayati (APH), Trichoderma spp., merupakan salah satu pengendalian P. palmivora yang menjanjikan karena murah, mudah didapat dan aman terhadap lingkungan. Penelitian ini bertujuan mengetahui kesesuaian, antagonistik, dan efektivitas biofungisida berbahan aktif Trichoderma spp. secara in vitro. Di samping itu juga bertujuan mengetahui konsentrasi efektif biofungisida berbahan aktif T. asperellum untuk mengendalikan P. palmivora secara in vitro dan in vivo. T. asperellum, T. harzianum, dan T. viride, ditumbuhkan bersama pada media PDA untuk mengetahui kesesuaian antarspesies. Antagonistik dan efektivitas Trichoderma spp. terhadap P. palmivora secara in vitro diuji menggunakan metode dual culture. Biofungisida berbahan aktif T. asperellum diuji efektivitasnya secara in vivo pada buah kakao. Hasil uji kesesuaian menunjukkan bahwa ketiga spesies yang diuji berkesesuaian dan efektifitas terbaik ditunjukkan pada kombinasi T. asperellum dan T. viride. Hasil penelitian juga menunjukkan bahwa biofungisida berbahan aktif T. asperellum dengan konsentrasi tertinggi terbukti dapat menghambat pertumbuhan P. palmivora.Kata kunci: Trichoderma spp., efektivitas, kesesuaian, antagonis, biofungisida


2014 ◽  
Vol 40 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Matheus Aparecido Pereira Cipriano ◽  
Amaury da Silva dos Santos ◽  
Ludwig Heinrich Pfenning ◽  
Flávia Rodrigues Alves Patrício

Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76%) showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.


Sign in / Sign up

Export Citation Format

Share Document