Sterile fungi from zoysiagrass rhizosphere as plant growth promoters in spring wheat

1994 ◽  
Vol 40 (8) ◽  
pp. 637-644 ◽  
Author(s):  
Manchanahally B. Shivanna ◽  
Manchanahally S. Meera ◽  
Mitsuro Hyakumachi

Eleven out of 18 sterile fungal isolates and an isolate each of Penicillium sp. and Trichoderma sp. from the zoysiagrass rhizosphere were effective in enhancing the growth of two wheat varieties in greenhouse conditions. They enhanced the top length and top dry biomass of plants significantly and induced the plants to produce long earheads and more seeds. Notable among isolates were GS6-1, GS6-2, GS7-3, GS7-4, GS8-6, GS10-1, GS10-2, and GU23-3, which enhanced the growth by several times, resulting in a conspicuous growth promotion effect that differed depending on the variety. Penicillium and Trichoderma species were less effective than sterile isolates in enhancing growth. Seven of the 11 effective sterile isolates from the zoysiagrass rhizosphere (as determined under greenhouse conditions) and a wheat rhizosphere isolate (K-17) were further tested under field conditions. Most of the isolates except K-17 enhanced the growth of one variety, whereas a few isolates enhanced the growth of the other variety. However, at least four isolates each increased yields of both varieties. Isolate GS6-1, which was very effective under greenhouse conditions in promoting overall growth, was less effective under field conditions; however, the yield components were not affected. The efficiency of the plant growth promoting isolates depended upon the wheat variety and soil nutrient conditions in addition to their inherent growth promotion abilities.Key words: plant growth promoting fungi (PGPF), sterile fungi, wheat growth promotion, yield components.

2021 ◽  
Vol 12 (3) ◽  
pp. 498-505
Author(s):  
A. Pastoshchuk ◽  
Y. Yumyna ◽  
P. Zelena ◽  
V. Nudha ◽  
V. Yanovska ◽  
...  

Deep insight into compositional and functional features of endophytic bacterial communities residing in wheat grains opens the way to the use of their plant growth promoting and biocontrol abilities in agricultural biotechnology. The aim of this work was to compare grain-residing endophytes from winter wheat varieties with different sensitivity to Pseudomonas syringae pv. atrofaciens (McCulloch) and to examine their plant-beneficial traits and antagonistic effects. Grain-residing bacteria were isolated from surface-sterilized grains of three wheat varieties sown in Ukraine following a culture-dependent protocol, and were screened for their plant growth promotion (PGP) and antagonistic properties. Bacterial morphotypes were represented by gram-negative rods, endospore-forming bacilli and gram-positive cocci. Different resistance to phytopathogenic pseudomonads was associated with distinctive quantitative and functional features of grain-residing endophytic communities. High resistance to P. syringae was coupled with the prevalence of gram-negative rods in the endophytic community, the highest proportion of endophytic bacteria possessing three PGP activities (phosphate solubilization, nitrogen fixation and production of indolic compounds) simultaneously, and with the most potent antagonistic activity of grain-residing endospore-forming bacilli. In total, five grain-residing isolates, which were obtained from three wheat varieties (two isolates from varieties with medium and high resistance and one – from a low-resistant variety), demonstrated ability to restrain P. syringae pv. atrofaciens (McCulloch) growth. Two isolates (P6 and P10) which were obtained from the high-resistant wheat variety Podolyanka and were assigned to Paenibacillus and Brevibacillus genera according to their biochemical profiling and MS-DS identification, showed the most potent antagonistic effects as indicated by maximum inhibition zone in agar well diffusion assay. These results shed light on the association of the features of grain-residing endophytic bacteria with wheat resistance to phytopathogenic pseudomonads. Isolates from the high-resistant wheat variety can be recommended for grain dressing as plant growth promoting and biocontrol agents for P. syringae pv. atrofaciens (McCulloch).


2021 ◽  
Vol 12 ◽  
Author(s):  
Shabiha Nudrat Hazarika ◽  
Kangkon Saikia ◽  
Atlanta Borah ◽  
Debajit Thakur

Endophytes are well-acknowledged inoculants to promote plant growth, and extensive research has been done in different plants. However, there is a lacuna about the endophytes associated with tea clones and their benefit to promote plant growth. The present study focuses on isolating and characterizing the beneficial endophytic bacteria (EnB) prevalent in commercially important tea clones cultivated in North Eastern India as plant growth promoters. Diversity of culturable EnB microbiome, in vitro traits for plant growth promotion (PGP), and applicability of potent isolates as bioinoculant for in vivo PGP abilities have been assessed in the present study. A total of 106 EnB identified as members of phyla Proteobacteria, Firmicutes, and Actinobacteria were related to 22 different genera and six major clusters. Regarding PGP traits, the percentage of isolates positive for the production of indole acetic acid, phosphate solubilization, nitrogen fixation siderophore, ammonia, and 1-aminocyclopropane-1-carboxylic acid deaminase production were 86.8, 28.3, 78.3, 30.2, 95.3, and 87.7, respectively. In total, 34.0, 52.8, and 17.0% of EnB showed notable production of hydrolytic enzymes like cellulase, protease, and amylase, respectively. Additionally, based on the bonitur score, the top two isolates K96 identified as Stenotrophomonas sp. and M45 identified as Pseudomonas sp. were evaluated for biofilm formation, motility, and in vivo plant growth promoting activity. Results suggested strong biofilm formation and motility in K96 and M45 which may attribute to the colonization of the strains in the plants. Further in vivo plant growth promotion experiment suggested sturdy efficacy of the K96 and M45 as plant growth promoters in nursery condition in commercial tea clones Tocklai vegetative (TV) TV22 and TV26. Thus, this study emphasizes the opportunity of commercialization of the selected isolates for sustainable development of tea and other crops.


2021 ◽  
Vol 11 (5) ◽  
pp. 2233
Author(s):  
Maria J. Ferreira ◽  
Angela Cunha ◽  
Sandro Figueiredo ◽  
Pedro Faustino ◽  
Carla Patinha ◽  
...  

Root−associated microbial communities play important roles in the process of adaptation of plant hosts to environment stressors, and in this perspective, the microbiome of halophytes represents a valuable model for understanding the contribution of microorganisms to plant tolerance to salt. Although considered as the most promising halophyte candidate to crop cultivation, Salicornia ramosissima is one of the least-studied species in terms of microbiome composition and the effect of sediment properties on the diversity of plant-growth promoting bacteria associated with the roots. In this work, we aimed at isolating and characterizing halotolerant bacteria associated with the rhizosphere and root tissues of S. ramosissima, envisaging their application in saline agriculture. Endophytic and rhizosphere bacteria were isolated from wild and crop cultivated plants, growing in different estuarine conditions. Isolates were identified based on 16S rRNA sequences and screened for plant-growth promotion traits. The subsets of isolates from different sampling sites were very different in terms of composition but consistent in terms of the plant-growth promoting traits represented. Bacillus was the most represented genus and expressed the wider range of extracellular enzymatic activities. Halotolerant strains of Salinicola, Pseudomonas, Oceanobacillus, Halomonas, Providencia, Bacillus, Psychrobacter and Brevibacterium also exhibited several plant-growth promotion traits (e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization). Considering the taxonomic diversity and the plant-growth promotion potential of the isolates, the collection represents a valuable resource that can be used to optimize the crop cultivation of Salicornia under different environmental conditions and for the attenuation of salt stress in non-halophytes, considering the global threat of arable soil salinization.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 888
Author(s):  
Giorgia Novello ◽  
Patrizia Cesaro ◽  
Elisa Bona ◽  
Nadia Massa ◽  
Fabio Gosetti ◽  
...  

The reduction of chemical inputs due to fertilizer and pesticide applications is a target shared both by farmers and consumers in order to minimize the side effects for human and environmental health. Among the possible strategies, the use of biostimulants has become increasingly important as demonstrated by the fast growth of their global market and by the increased rate of registration of new products. In this work, we assessed the effects of five bacterial strains (Pseudomonas fluorescens Pf4, P. putida S1Pf1, P. protegens Pf7, P. migulae 8R6, and Pseudomonas sp. 5Vm1K), which were chosen according to their previously reported plant growth promotion traits and their positive effects on fruit/seed nutrient contents, on a local onion cultivar and on zucchini. The possible variations induced by the inoculation with the bacterial strains on the onion nutritional components were also evaluated. Inoculation resulted in significant growth stimulation and improvement of the mineral concentration of the onion bulb, induced particularly by 5Vm1K and S1Pf1, and in different effects on the flowering of the zucchini plants according to the bacterial strain. The present study provides new information regarding the activity of the five plant growth-promoting bacteria (PGPB) strains on onion and zucchini, two plant species rarely considered by the scientific literature despite their economic relevance.


2021 ◽  
Vol 16 (8) ◽  
pp. 75-80
Author(s):  
Pitchaiah Pelapudi ◽  
Sasikala Ch ◽  
Swarnabala Ganti

In the present rapid growing world, need for a sustainable agricultural practice which helps in meeting the adequate food demand is much needed. In this context, plant growth promoting bacteria were brought into the spot light by the researchers. Though the plant growth promoting bacteria have several beneficial applications, due to some of the disadvantages in the field conditions, they lagged behind. In the current research work, native PGPR were isolated from the rhizosphere soil samples of maize with an aim to isolate the nitrogen fixing, phosphate solubilising and potash solubilising bacteria. Out of the several isolates, potent PGPR isolates viz., Paenibacillus durus PCPB067, Bacillus megaterium PCBMG041 and Paenibacillus glucanolyticus PCPG051 were isolated and identified by using the 16 S rRNA gene sequencing studies. Genomic DNA sequences obtained were deposited in the NCBI Genbank and accession numbers were assigned as MW793452, MW793456 and MW843633. In order to check the efficacy of the PGPR isolates, pot trials were conducted by taking maize as the host plant. Several parameters viz. shoot length, shoot weight, root length, root weight and weight of the seeds were tested in which PGP treatment showed good results (shoot length - 187±3.5 cm, shoot weight - 31±4 g, root length - 32±3.6 cm, root weight - 17±2 g, yield- 103.3±6.1 g) when compared to the chemical fertilizer treatment (shoot length - 177±3.5 cm, shoot weight - 25±3.6 g, root length - 24±3.5 cm, root weight - 14.6±1.52 g, yield- 85.6±7.6 g). Based on the results, it can be stated that these native PGPR isolates can be effectively used in the plant growth promotion of maize.


2017 ◽  
Vol 5 (5) ◽  
Author(s):  
Vanessa Nessner Kavamura ◽  
Suikinai Nobre Santos ◽  
Rodrigo Gouvêa Taketani ◽  
Rafael Leandro Figueiredo Vasconcellos ◽  
Itamar Soares Melo

ABSTRACT The strain of Bacillus sp. CMAA 1363 was isolated from the Brazilian Caatinga biome and showed plant growth-promoting traits and ability to promote maize growth under drought stress. Sequencing revealed genes involved in stress response and plant growth promotion. These genomic features might aid in the protection of plants against the negative effects imposed by drought.


Sign in / Sign up

Export Citation Format

Share Document