Scanning electron microscopy of the septal pore cap of the basidiomycete Schizophyllum commune

1994 ◽  
Vol 40 (10) ◽  
pp. 879-883 ◽  
Author(s):  
Wally H. Müller ◽  
Adriaan C. van Aelst ◽  
Theo P. van der Krift ◽  
Teun Boekhout

As part of a comparative study of the structure and function of pore structures in heterobasidiomycetous yeasts, dikaryotic hyphae of Schizophyllum commune were subjected to chemical fixation, freeze fracturing, maceration, and freeze substitution, and were subsequently prepared for scanning electron microscopy. The interior of the hyphal cell was visualized and revealed the perforated septal pore cap or parenthesome, mitochondria, vacuoles, and tubular endoplasmic reticulum. The septal pore cap showed connections with tubular endoplasmic reticulum. This tubular endoplasmic reticulum covered the dolipore septal surface. The results presented here complement and extend the ultrastructural image of the septal pore cap obtained from transmission electron micrographs.Key words: septal pore cap, Schizophyllum commune, freeze fracture, maceration, scanning electron microscopy.

Author(s):  
J. C. Russ ◽  
E. McNatt

In order to study the retention of copper in cirrhotic liver, rats were made cirrhotic by carbon tetrachloride inhalation twice weekly for three months and fed 0.2% copper acetate ad libidum in drinking water for one month. The liver tissue was fixed in osmium, sectioned approximately 2000 Å thick, and stained with lead citrate. The section was examined in a scanning electron microscope (JEOLCO JSM-2) in the transmission electron mode.Figure 1 shows a typical area that includes a red blood cell in a sinusoid, a disse, and a portion of the cytoplasm of a hepatocyte which contains several mitochondria, peribiliary dense bodies, glycogen granules, and endoplasmic reticulum.


HortScience ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 99-103 ◽  
Author(s):  
Hirofumi Terai ◽  
Alley E. Watada ◽  
Charles A. Murphy ◽  
William P. Wergin

Structural changes in chloroplasts of broccoli (Brassica oleracea L., Italica group) florets during senescence were examined using light microscopy, scanning electron microscopy (SEM) with freeze-fracture technique, and transmission electron microscopy (TEM) to better understand the process of chloroplast degradation, particularly at the advanced stage of senescence. Light microscopy revealed that chloroplasts, which initially were intact and green, became obscure in shape, and their color faded during senescence. Small, colored particles appeared in cells as the florets approached the final stage of senescence and became full- to dark-yellow in color. Scanning electron microscopy showed that stroma thylakoids in the chloroplast initially were parallel to each other and grana thylakoids were tightly stacked. As senescence advanced, the grana thylakoids degenerated and formed globules. The globules became larger by aggregation as senescence progressed, and the large globules, called “thylakoid plexus,” formed numerous vesicles. The vesicles ultimately were expelled into the cytosol, and the light microscope revealed many colored particles in the senescent cells. These results indicate that the degradation of chloroplasts in broccoli florets progresses systematically, with the final product being colored particles, which are visible in yellow broccoli sepal cells.


Author(s):  
D. W. Coble ◽  
E. O. Kairinen

Examination of hair medulla by transmission electron microscopy (TEM) is difficult because of the keratinous composition of hair and because of sectioning problems that result from insufficient infiltration and nonmiscibility of hair with embedding resins, even those of low viscosity. Although longitudinally cutting or tearing fibers will expose the medulla for embedment or direct viewing, considerable disruption occurs in its structure. Less disruption results from the use of freeze fracture techniques for either transmission or scanning electron microscopy (SEM).Freshly plucked human scalp and beard hairs were submersed in liquid nitrogen for a minimum of three minutes, held at proximal and distal ends with Dumont #10 tweezers, and slowly bent to an arc until the specimens broke at the apex. Customarily, clean bevelled fractures occurred along the tips of the arcs and exposed not only the medulla but also the cortex and cuticle. The fractured specimens were then removed from liquid nitrogen.


Author(s):  
V. R. Mumaw ◽  
B. L. Munger

The use of the scanning electron microscope (SEM) has become a very useful tool complimenting studies done by transmission electron microscopy (TEM). The presence of cilia in the renal epithelium have been noted by various investigators and described by Latta. The present study utilizing the SEM and a freeze fracture technique demonstrates the regularity of cilia as well as the surface topography of the renal epithelium in a fractured profile.


Author(s):  
Richard E. Edelmann ◽  
Kirk Czymmek ◽  
Karen L. Klomparens

To date, only limited use has been made of the advanced techniques of cryopreservation for mycological samples, with the exception of the unofficial “lab rat” Saccharomyces cerevisae. However, cyropreservation can offer some distinct advantages over conventional chemical fixation, as well as unique solutions for specific mycological problems. This presentation specifically deals with the utilization of cryo-scanning electron microscopy (cryo-SEM), freeze substitution for transmission electron microscopy (TEM), freeze fracture and freeze etching of mycological samples. Due to the distinctive morphological and biochemical nature of fungi, as compared to plant and animal samples, some significant adaptations to existing published protocols have had to be devised and are presented here.


1978 ◽  
Vol 56 (7) ◽  
pp. 747-753 ◽  
Author(s):  
P. Jeffries ◽  
T. W. K. Young

Using results obtained with light and scanning electron microscopy of critical-point-dried material and transmission electron microscopy of carbon replicas and freeze-fracture and ultra-thin sections, the structure and germination of the sporangiospore of Phascolomyces articulosus Boedijn is described. The sporangial wall is trilaminate and the ornamented spore wall is two layered. During germination, a new wall layer develops between the plasmalemma and the original spore wall. Sporangial structure is related to that of other members of the Thamnidiaceae and the use of germinating spores of P. articulosus for infection studies of the mycoparasite Piptocephalis unispora is indicated.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Sign in / Sign up

Export Citation Format

Share Document