scholarly journals Cadmium reduces nitric oxide production by impairing phosphorylation of endothelial nitric oxide synthase

2008 ◽  
Vol 86 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Syamantak Majumder ◽  
Ajit Muley ◽  
Gopi Krishna Kolluru ◽  
Samir Saurabh ◽  
K. P. Tamilarasan ◽  
...  

Cadmium (Cd) perturbs vascular health and interferes with endothelial function. However, the effects of exposing endothelial cells to low doses of Cd on the production of nitric oxide (NO) are largely unknown. The objective of the present study was to evaluate these effects by using low levels of CdCl2 concentrations, ranging from 10 to 1000 nmol/L. Cd perturbations in endothelial function were studied by employing wound-healing and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. The results suggest that a CdCl2 concentration of 100 nmol/L maximally attenuated NO production, cellular migration, and energy metabolism in endothelial cells. An egg yolk angiogenesis model was employed to study the effect of Cd exposure on angiogenesis. The results demonstrate that NO supplementation restored Cd-attenuated angiogenesis. Immunofluorescence, Western blot, and immuno-detection studies showed that low levels of Cd inhibit NO production in endothelial cells by blocking eNOS phosphorylation, which is possibly linked to processes involving endothelial function and dysfunction, including angiogenesis.

2002 ◽  
Vol 22 (24) ◽  
pp. 8467-8477 ◽  
Author(s):  
Xiu-Fen Ming ◽  
Hema Viswambharan ◽  
Christine Barandier ◽  
Jean Ruffieux ◽  
Kozo Kaibuchi ◽  
...  

ABSTRACT Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB.


2000 ◽  
Vol 279 (4) ◽  
pp. F671-F678 ◽  
Author(s):  
Xiaohui Zhang ◽  
Hong Li ◽  
Haoli Jin ◽  
Zachary Ebin ◽  
Sergey Brodsky ◽  
...  

Hyperhomocysteinemia (HHCy) is an independent and graded cardiovascular risk factor. HHCy is prevalent in patients with chronic renal failure, contributing to the increased mortality rate. Controversy exists as to the effects of HHCy on nitric oxide (NO) production: it has been shown that HHCy both increases and suppresses it. We addressed this problem by using amperometric electrochemical NO detection with a porphyrinic microelectrode to study responses of endothelial cells incubated with homocysteine (Hcy) to the stimulation with bradykinin, calcium ionophore, or l-arginine. Twenty-four-hour preincubation with Hcy (10, 20, and 50 μM) resulted in a gradual decline in responsiveness of endothelial cells to the above stimuli. Hcy did not affect the expression of endothelial nitric oxide synthase (eNOS), but it stimulated formation of superoxide anions, as judged by fluorescence of dichlorofluorescein, and peroxynitrite, as detected by using immunoprecipitation and immunoblotting of proteins modified by tyrosine nitration. Hcy did not directly affect the ability of recombinant eNOS to generate NO, but oxidation of sulfhydryl groups in eNOS reduced its NO-generating activity. Addition of 5-methyltetrahydrofolate restored NO responses to all agonists tested but affected neither the expression of the enzyme nor formation of nitrotyrosine-modified proteins. In addition, a scavenger of peroxynitrite or a cell-permeant superoxide dismutase mimetic reversed the Hcy-induced suppression of NO production by endothelial cells. In conclusion, electrochemical detection of NO release from cultured endothelial cells demonstrated that concentrations of Hcy >20 μM produce a significant indirect suppression of eNOS activity without any discernible effects on its expression. Folates, superoxide ions, and peroxynitrite scavengers restore the NO-generating activity to eNOS, collectively suggesting that cellular redox state plays an important role in HCy-suppressed NO-generating function of this enzyme.


2021 ◽  
Vol 22 (19) ◽  
pp. 10287
Author(s):  
Chih-Hsien Wu ◽  
Yi-Lin Chiu ◽  
Chung-Yueh Hsieh ◽  
Guo-Shiang Tsung ◽  
Lian-Shan Wu ◽  
...  

Cilostazol was suggested to be beneficial to retard in-stent atherosclerosis and prevent stent thrombosis. However, the mechanisms responsible for the beneficial effects of cilostazol are not fully understood. In this study, we attempted to verify the mechanism of the antithrombotic effect of cilostazol. Human umbilical vein endothelial cells (HUVECs) were cultured with various concentrations of cilostazol to verify its impact on endothelial cells. KLF2, silent information regulator transcript-1 (SIRT1), endothelial nitric oxide synthase (eNOS), and endothelial thrombomodulin (TM) expression levels were examined. We found cilostazol significantly activated KLF2 expression and KLF2-related endothelial function, including eNOS activation, Nitric oxide (NO) production, and TM secretion. The activation was regulated by SIRT1, which was also stimulated by cilostazol. These findings suggest that cilostazol may be capable of an antithrombotic and vasculoprotective effect in endothelial cells.


2011 ◽  
Vol 286 (22) ◽  
pp. 20100-20108 ◽  
Author(s):  
Zhihong Xiao ◽  
Tingting Wang ◽  
Honghua Qin ◽  
Chao Huang ◽  
Youmei Feng ◽  
...  

Endothelial nitric-oxide synthase (eNOS) plays a central role in cardiovascular regulation. eNOS function is critically modulated by Ca2+ and protein phosphorylation, but the interrelationship between intracellular Ca2+ mobilization and eNOS phosphorylation is poorly understood. Here we show that endoplasmic reticulum (ER) Ca2+ release activates eNOS by selectively promoting its Ser-635/633 (bovine/human) phosphorylation. With bovine endothelial cells, thapsigargin-induced ER Ca2+ release caused a dose-dependent increase in eNOS Ser-635 phosphorylation, leading to elevated NO production. ER Ca2+ release also promoted eNOS Ser-633 phosphorylation in mouse vessels in vivo. This effect was independent of extracellular Ca2+ and selective to Ser-635 because the phosphorylation status of other eNOS sites, including Ser-1179 or Thr-497, was unaffected in thapsigargin-treated cells. Blocking ERK1/2 abolished ER Ca2+ release-induced eNOS Ser-635 phosphorylation, whereas inhibiting protein kinase A or Ca2+/calmodulin-dependent protein kinase II had no effect. Protein phosphorylation assay confirmed that ERK1/2 directly phosphorylated the eNOS Ser-635 residue in vitro. Further studies demonstrated that ER Ca2+ release-induced ERK1/2 activation mediated the enhancing action of purine or bradykinin receptor stimulation on eNOS Ser-635/633 phosphorylation in bovine/human endothelial cells. Mutating the Ser-635 to nonphosphorylatable alanine prevented ATP from activating eNOS in cells. Taken together, these studies reveal that ER Ca2+ release enhances eNOS Ser-635 phosphorylation and function via ERK1/2 activation. Because ER Ca2+ is commonly mobilized by agonists or physicochemical stimuli, the identified ER Ca2+-ERK1/2-eNOS Ser-635 phosphorylation pathway may have a broad role in the regulation of endothelial function.


Cardiology ◽  
2015 ◽  
Vol 132 (4) ◽  
pp. 252-260 ◽  
Author(s):  
Wen-Qi Han ◽  
Feng-Jun Chang ◽  
Qun-Rang Wang ◽  
Jun-Qiang Pan

Objectives: Endothelial dysfunction is involved in the development of the acute coronary syndrome (ACS). Plasma microparticles (MPs) from other diseases have been demonstrated to initiate coagulation and endothelial dysfunction. However, whether MPs from ACS patients impair vasodilatation and endothelial function remains unclear. Methods: Patients (n = 62) with ACS and healthy controls (n = 30) were recruited for MP isolation. Rat thoracic aortas were incubated with MPs from ACS patients or healthy controls to determine the effects of MPs on endothelial-dependent vasodilatation, the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS), the interaction of eNOS with heat shock protein 90 (Hsp90), and nitric oxide (NO) and superoxide anion (O2-) production. The origin of MPs was assessed by flow cytometry. Results: MP concentrations were increased in patients with ACS compared with healthy controls. They were positively correlated with the degree of coronary artery stenosis. MPs from ACS patients impair endothelial-dependent vasodilatation, decrease both Akt and eNOS phosphorylation, decrease the interaction between eNOS and Hsp90, and decrease NO production but increase O2- generation in rat thoracic aortas. Endothelial-derived MPs and platelet-derived MPs made up nearly 75% of MPs. Conclusions: Our data indicate that MPs from ACS patients negatively affect endothelial-dependent vasodilatation via Akt/eNOS-Hsp90 pathways.


2006 ◽  
Vol 174 (3) ◽  
pp. 369-377 ◽  
Author(s):  
Carlos Fernández-Hernando ◽  
Masaki Fukata ◽  
Pascal N. Bernatchez ◽  
Yuko Fukata ◽  
Michelle I. Lin ◽  
...  

Lipid modifications mediate the subcellular localization and biological activity of many proteins, including endothelial nitric oxide synthase (eNOS). This enzyme resides on the cytoplasmic aspect of the Golgi apparatus and in caveolae and is dually acylated by both N-myristoylation and S-palmitoylation. Palmitoylation-deficient mutants of eNOS release less nitric oxide (NO). We identify enzymes that palmitoylate eNOS in vivo. Transfection of human embryonic kidney 293 cells with the complementary DNA (cDNA) for eNOS and 23 cDNA clones encoding the Asp-His-His-Cys motif (DHHC) palmitoyl transferase family members showed that five clones (2, 3, 7, 8, and 21) enhanced incorporation of [3H]-palmitate into eNOS. Human endothelial cells express all five of these enzymes, which colocalize with eNOS in the Golgi and plasma membrane and interact with eNOS. Importantly, inhibition of DHHC-21 palmitoyl transferase, but not DHHC-3, in human endothelial cells reduces eNOS palmitoylation, eNOS targeting, and stimulated NO production. Collectively, our data describe five new Golgi-targeted DHHC enzymes in human endothelial cells and suggest a regulatory role of DHHC-21 in governing eNOS localization and function.


2005 ◽  
Vol 280 (43) ◽  
pp. 35943-35952 ◽  
Author(s):  
David Fulton ◽  
Jarrod E. Church ◽  
Ling Ruan ◽  
Chunying Li ◽  
Sarika G. Sood ◽  
...  

The endothelial nitric-oxide synthase (eNOS) is regulated in part by serine/threonine phosphorylation, but eNOS tyrosine phosphorylation is less well understood. In the present study we have examined the tyrosine phosphorylation of eNOS in bovine aortic endothelial cells (BAECs) exposed to oxidant stress. Hydrogen peroxide and pervanadate (PV) treatment stimulates eNOS tyrosine phosphorylation in BAECs. Phosphorylation is blocked by the Src kinase family inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2). Moreover, eNOS and c-Src can be coimmunoprecipitated from BAEC lysates by antibodies directed against either protein. Domain mapping and site-directed mutagenesis studies in COS-7 cells transfected with either eNOS alone and then treated with PV or cotransfected with eNOS and constitutively active v-Src identified Tyr-83 (bovine sequence) as the major eNOS tyrosine phosphorylation site. Tyr-83 phosphorylation is associated with a 3-fold increase in basal NO release from cotransfected cells. Furthermore, the Y83F eNOS mutation attenuated thapsigargin-stimulated NO production. Taken together, these data indicate that Src-mediated tyrosine phosphorylation of eNOS at Tyr-83 modulates eNOS activity in endothelial cells.


2018 ◽  
Vol 96 (9) ◽  
pp. 879-885 ◽  
Author(s):  
Thanaporn Sriwantana ◽  
Pornpun Vivithanaporn ◽  
Kittiphong Paiboonsukwong ◽  
Krit Rattanawonsakul ◽  
Sirada Srihirun ◽  
...  

Iron chelation can improve endothelial function. However, effect on endothelial function of deferiprone has not been reported. We hypothesized deferiprone could promote nitric oxide (NO) production in endothelial cells. We studied effects of deferiprone on blood nitrite and blood pressure after single oral dose (25 mg/kg) in healthy subjects and hemoglobin E/β-thalassemia patients. Further, effects of deferiprone on NO production and endothelial NO synthase (eNOS) phosphorylation in primary human pulmonary artery endothelial cells (HPAEC) were investigated in vitro. Blood nitrite levels were higher in patients with deferiprone therapy than those without deferiprone (P = 0.023, n = 16 each). Deferiprone increased nitrite in plasma and whole blood of healthy subjects (P = 0.002 and 0.044) and thalassemia patients (P = 0.003 and 0.046) at time 180 min (n = 20 each). Asymptomatic reduction in diastolic blood pressure (P = 0.005) and increase in heart rate (P = 0.009) were observed in healthy subjects, but not in thalassemia patients. In HPAEC, deferiprone increased cellular nitrite and phospho-eNOS (Ser1177) (P = 0.012 and 0.035, n = 6) without alteration in total eNOS protein and mRNA. We conclude that deferiprone can induce NO production by enhancing eNOS phosphorylation in endothelial cells.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Lakeisha C Tillery ◽  
Evangeline D Motley-Johnson

Protease-activated receptors (PARs) have been shown to regulate endothelial nitric oxide synthase (eNOS) through the activation of specific sites on the enzyme. It has been established that phosphorylation of eNOS-Ser-1177 leads to the production of the potent vasodilator nitric oxide (NO), and is associated with PAR-2 activation; while phosphorylation of eNOS-Thr-495 decreases NO production, and is coupled to PAR-1 activation. In this study, we demonstrate a differential regulation of the eNOS/NO pathway by the PARs using primary adult human coronary artery endothelial cells (HCAEC). Thrombin and the PAR-1 activating peptide, TFLLR, which are known to phosphorylate eNOS-Thr-495 in bovine and human umbilical vein endothelial cells, phosphorylated eNOS-Ser-1177 in HCAECs, and increased NO production. The PAR-1 responses were blocked using SCH-79797, a PAR-1 inhibitor, and L-NAME was used to inhibit NO production. A PAR-2 specific ligand, SLIGRL, which has been shown to phosphorylate eNOS-Ser-1177 in bovine and human umbilical vein endothelial cells, primarily regulated eNOS-Thr-495 phosphorylation and suppressed NO production in the HCAECs. PAR-3, known for its non-signaling potential, was activated by TFRGAP, a PAR-3 mimicking peptide, and only induced phosphorylation of eNOS-Thr-495 with no effect on NO production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was calcium-dependent using the calcium chelator, BAPTA, and eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632. These data suggest a vascular bed specific differential coupling of PARs to the signaling pathways that regulate eNOS and NO production that may be responsible for the modulation of endothelial function associated with cardiovascular disease.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Sumathy Mohan ◽  
Ryzard Konopinski ◽  
Mohan Natarajan

A decline in the bioavailability of nitric oxide (NO) that causes endothelial dysfunction is a hall-mark of diabetes. The availability of NO to the vasculature is regulated by endothelial nitric oxide synthase (eNOS) activity and the involvement of heat shock protein 90 (Hsp-90) in the regulation of eNOS activity has been demonstrated. Hsp-90 has been shown to interact with upstream kinases (inhibitor kappa B kinases α, β and γ) in non-vascular cells. In this study, we have investigated the interaction of Hsp-90-IKKβ in endothelial cells under conditions of high glucose (HG) as a possible mechanism that diminishes Hsp-90-eNOS interaction, which could contribute to reduced bioavailability of NO. We report for the first time that IKKβ interacts with Hsp-90 and this interaction is augmented by HG in vascular endothelial cells. HG also augments transcriptional (4.02 ± 0.81-folds) and translational (1.97 ± 0.17-fold) expression as well as the catalytic activity of IKKβ (2.04 ± 0.06-folds). Another important and novel finding is that both IKKβ and eNOS could be co-immunoprecipitated with Hsp-90 (Figures A & B ) thus indicating the possible existence of a complex of IKKβ and eNOS interacting with single pool of Hsp-90. Inhibition of Hsp-90 with geldanamycin (2μM) or Radicicol (20μM) mitigated (0.45 ± 0.04 -fold and 0.93 ± 0.16-fold, respectively) HG induced-IKKβ activity (2.5 ± 0.416-fold). Blocking of IKKβ expression by IKK inhibitor II (15μM wedelolactone) or siRNA improved Hsp-90-eNOS interaction and NO production under conditions of HG. These results illuminate a possible mechanism for the declining eNOS activity reported under conditions of HG.


Sign in / Sign up

Export Citation Format

Share Document