Isolation and some properties of argininosuccinate lyase from a higher plant source

1968 ◽  
Vol 46 (5) ◽  
pp. 393-399 ◽  
Author(s):  
P. D. Shargool ◽  
E. A. Cossins

L-Argininosuccinate arginine-lyase (EC 4.3.2.1) was extracted from the cotyledons of germinating pea seeds. The enzyme was purified approximately 20 times by isoelectric precipitation, followed by treatment with calcium phosphate gel and chromatography on carboxymethyl cellulose. The partially purified enzyme was shown to catalyze both the condensation of arginine and fumarate to give argininosuccinate and the cleavage of argininosuccinate to give arginine and fumarate. The enzyme displayed maximal activity at pH 7.9 and was relatively stable after storage at −20 °C for 12 months or after dialysis overnight at 2 °C. The Michaelis constants for argininosuccinate and arginine were found to be 2 × 10−4 M and 6.7 × 10−3 M respectively. Enzyme activity was partially inhibited by 10−4 M p-chloromercuribenzoate. It is concluded that this enzyme has importance in arginine biosynthesis in germinating pea cotyledons.

1969 ◽  
Vol 47 (4) ◽  
pp. 467-475 ◽  
Author(s):  
P. D. Shargool ◽  
E. A. Cossins

The synthesis and metabolism of arginine in germinating peas was examined by supplying micromolar quantities of L-citruiline-carbamyl-14C, DL-arginine-carbamyl-14C, and DL-arginine-5-14C to imbibing seeds. Citrulline was readily incorporated into arginine, but the labelled arginine solutions were not extensively metabolized.Extracts of 1-day-old cotyledons were found to catalyze the synthesis of arginine from citrulline in a reaction having absolute requirements for ATP, L-aspartate, and magnesium ions. The extracts were fractionated by (NH4)2SO4 precipitation followed by gel filtration on columns of Sephadex G-50 and G-200. These treatments increased the specific enzyme activity by approximately 36 times. After such treatments the preparations still contained appreciable amounts of argininosuccinate lyase (L-argininosuccinate arginine-lyase, EC 4.3.2.1) activity. The rate of arginine synthesis was altered by increasing the concentrations of L-citrulline, L-aspartate, and ATP. The latter compounds were found to be inhibitory at concentrations of 1 μmole/ml and 4 μmoles/ml, respectively. Arginine synthesis was markedly affected by pH and by additions of arginine and argininosuccinate. It is concluded that germinating pea cotyledons contain appreciable levels of argirrinosuccmate synthetase (L-citrulline:L-aspartate ligase (AMP), EC 6.3.4.5), and furthermore, that this enzyme has importance in arginine biosynthesis during germination.


1977 ◽  
Vol 167 (1) ◽  
pp. 71-75 ◽  
Author(s):  
R F Matagne ◽  
J P Schlösser

Argininosuccinate lyase (EC 4.3.2.1) was purified by (NH4)2SO4 fractionation, chromatography on DEAE-cellulose and gel filtration on Sephadex G-200. The final enzyme preparation was purified 46-fold compared with the crude extract. Electrophoresis of this preparation revealed three bands, the major one having the enzyme activity. Analysis of the enzyme by gel filtration and by disc electrophoresis (in two different concentrations of acrylamide) gave mol.wts. of 200000 (+/- 15000) and 190000 (+/- 20000) respectively. Treatment with sodium dodecyl sulphate and mercaptoethanol dissociated the enzyme into subunits of mol.wt. 39000 (+/-2000). The results are indicative of the multimeric structure of the enzyme, which is composed of five (perhaps four or six) identical subunits.


1985 ◽  
Vol 227 (2) ◽  
pp. 405-412 ◽  
Author(s):  
P W Cheng ◽  
W E Wingert ◽  
M R Little ◽  
R Wei

We have characterized a bovine tracheal mucin beta-6-N-acetylglucosaminyltransferase that catalyses the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the C-6 of the N-acetylgalactosamine residue of galactosyl-β 1→3-N-acetylgalactosamine. Optimal enzyme activity was obtained between pH 7.5-8.5, at 5mM-MnCl2, and at 0.06-0.08% (v/v) Triton X-100 (or Nonidet P-40), or 0.5-5.0% (v/v) Tween 20. Ba2+, Mg2+ and Ca2+ could partially replace Mn2+, but Co2+, Fe2+, Cd2+ and Zn2+ could not. Sodium dodecyl sulphate, cetylpyridinium chloride, sodium deoxycholate, octyl beta-D-glucoside, digitonin and alkyl alcohols were less effective in enhancing enzyme activity, and dimethyl sulphoxide was ineffective. The apparent Michaelis constants were 1.25 mM for UDP-N-acetylglucosamine, 0.94-3.34 mM for freezing-point-depressing glycoprotein and 0.19 mM for periodate-treated blood-group-A porcine submaxillary mucin. Asialo ovine submaxillary mucin could not serve as the glycosyl acceptor. The structure of the 14C-labelled oligosaccharide obtained by alkaline-borohydride treatment of the product was identified as Gal beta 1→3(Glc-NAc beta 1→6)N-acetylgalactosaminitol by beta-hexosaminidase treatment, gas chromatography-mass spectrometry and 1H-n.m.r. (270 MHz) analysis. The enzyme is important in the regulation of mucin oligosaccharide biosynthesis.


1980 ◽  
Vol 26 (7) ◽  
pp. 833-838 ◽  
Author(s):  
Hiromi Kobori ◽  
Nobuo Taga

Extracellular alkaline phosphatase produced by a marine Pseudomonas was purified to electrophoretic homogeneity. The molecular weight of the enzyme was estimated to be 100 000. The enzyme had maximal activity at pH 11.5. The enzyme was completely inhibited by 1 mM EDTA. However, divalent cations reversed the enzyme inhibition and their order of effectiveness on the reaction was Zn2+ > Ca2+ > Mn2+ > Mg2+ > Sr2+ > Co2+. The enzyme activity was affected by the species of anion whose order of effectiveness was demonstrated to follow the lyotrophic series, Cl− > Br− > NO3−> ClO4− > SCN−. The activity of phosphatase was accelerated linearly by increased pressure until up to 1000 atm (1 atm = 101.325 kPa), and the enzyme activity at 1000 atm was 3.2 times higher than that at 1 atm.


1972 ◽  
Vol 50 (2) ◽  
pp. 158-165 ◽  
Author(s):  
R. L. Howden ◽  
H. Lees ◽  
Isamu Suzuki

Phosphoenolpyruvate (PEP) carboxylase (orthophosphate:oxalacetate carboxy-lyase (phosphorylating), EC 4.1.1.31) was purified 19-fold from Thiobacillus thiooxidans. The level of enzyme activity was dependent on culture age. No enzyme activity could be obtained from frozen cells.The pH optimum of the enzyme was determined to be around 8.0. Apparent Michaelis constants were determined for the substrates:phosphoenolpyruvate (1.4, 1.5 mM), bicarbonate (0.4, 1.1 mM), and magnesium (1.1, 0.8 mM) at pH 7.0 and 8.0, respectively. Acetyl-CoA was found to be a powerful activator of this enzyme, with the degree of activation increasing with decreasing pH. The concentration of acetyl-CoA to obtain half-maximal activation, however, remained fairly constant and low, namely 1.2 and 1.0 μM at pH 7.0 and 8.0, respectively. L-Aspartate and L-malate were strong inhibitors of enzyme activity. In the presence of aspartate at pH 7.0 the double reciprocal activity plots for PEP became nonlinear, a characteristic of negative cooperativity. These plots became linear with the addition of acetyl-CoA with aspartate now acting as a noncompetitive inhibitor with respect to PEP. At pH 8.0, the same plots were linear with aspartate acting as a competitive inhibitor of PEP. All the other effectors of PEP carboxylase from Salmonella typhimurium and Escherichia coli were found to be ineffective towards the enzyme from T. thiooxidans.


Development ◽  
1971 ◽  
Vol 26 (2) ◽  
pp. 313-322
Author(s):  
R. I. Freshney ◽  
J. Paul

Aminolaevulinate synthetase, aminolaevulinate dehydratase, and haem synthetase, three enzymes which may have a regulatory role in haem synthesis, have been determined in liver extracts from different foetal stages of the mouse. Haemoglobin synthesis increases rapidly from early on the 14th day, after fertilization, to reach a maximum late on the 15th day. Aminolaevulinate synthetase reaches a maximum on the 14th day, 24–36 h before the peak of haemoglobin synthesis, aminolaevulinate dehydratase on the 15th day, about 12 h before the peak of haemoglobin synthesis, and haem synthetase on the 17th day. Maximal activity of aminolaevulinate synthetase and aminolaevulinate dehydratase is of only a few hours' duration. Throughout embryonic development the activities of all three enzymes are higher than in the adult liver. The absence of a correlation of enzyme activity with foetal liver cell population changes implies that fluctuations in enzyme activity cannot be explained solely by changes in the proportions of different cell types. The high levels of activity relative to those of adult liver may be related to the high proportion of erythroid cells in the foetal liver. It is concluded that these enzymes are unlikely to form rate-limiting steps during the increase in haemoglobin synthesis between 14 and 15 days.


1977 ◽  
Vol 85 (3) ◽  
pp. 624-635 ◽  
Author(s):  
Donald E. Pittaway ◽  
Richard N. Andersen ◽  
James R. Givens

ABSTRACT Oestradiol-17β oxidoreductase activity, which catalyzes the interconversion of oestrone and oestradiol, was investigated in preparations of human ovaries. The enzyme activities were localized primarily in the 105 000 × g supernatant fraction; dialyzed supernatant preparations were used in subsequent studies. The pH optima were 6.9 for reduction and 8.1 for 17β-dehydrogenation. The apparent Michaelis constants for oestrone and oestradiol were 1 × 10-7 m and 5 × 10-7 m, respectively. The enzyme activity was present with either NADP(H) or NAD(H), though NADP(H) were the preferred cofactors. Non-aromatic steroids androstenedione, dehydroepiandrosterone, testosterone and 5-androstene-3β,17β-diol were poor substrates for the enzyme preparation. Methylation of the phenolic hydroxyl of oestrone and oestradiol resulted in slightly enhanced activities. The sulfhydryl reagent, N-ethylmaleimide, inhibited the reduction of oestrone. A dialyzed supernatant preparation retained approximately 79 % of the original enzyme activity when stored at −20°C for 6 weeks.


1993 ◽  
Vol 293 (2) ◽  
pp. 537-544 ◽  
Author(s):  
H J Lee ◽  
S H Chiou ◽  
G G Chang

The argininosuccinate lyase activity of duck delta-crystallin was inactivated by diethyl pyrocarbonate at 0 degrees C and pH 7.5. The inactivation followed pseudo-first-order kinetics after appropriate correction for the decomposition of the reagent during the modification period. The plot of the observed pseudo-first-order rate constant versus diethyl pyrocarbonate concentration in the range of 0.17-1.7 mM was linear and went through the origin with a second-order rate constant of 1.45 +/- 0.1 M-1.s-1. The double-logarithmic plot was also linear, with slope of 1.13, which suggested a 1:1 stoichiometry for the reaction between diethyl pyrocarbonate and delta-crystallin. L-Arginine, L-norvaline or L-citrulline protected the argininosuccinate lyase activity of delta-crystallin from diethyl pyrocarbonate inactivation. The dissociation constants for the delta-crystallin-L-arginine and delta-crystallin-L-citrulline binary complexes, determined by the protection experiments, were 4.2 +/- 0.2 and 0.12 +/- 0.04 mM respectively. Fumarate alone had no protective effect. However, fumarate plus L-arginine gave synergistic protection with a ligand binding interacting factor of 0.12 +/- 0.02. The double-protection data conformed to a random Uni Bi kinetic mechanism. Fluorescence-quenching studies indicated that the modified delta-crystallin had minimum, if any, conformational changes as compared with the native delta-crystallin. Inactivation of the enzyme activity was accompanied by an increasing absorbance at 240 nm of the protein. The absorption near 280 nm did not change. Treatment of the modified protein with hydroxylamine regenerated the enzyme activity to the original level. These results strongly indicated the modification of an essential histidine residue. Calculation from the 240 nm absorption changes indicated that only one histidine residue per subunit was modified by the reagent. This super-active histidine residue has a pKa value of approximately 6.8 and acts as a general acid-base catalyst in the enzyme reaction mechanism. Our experimental data are compatible with an E1cB mechanism [Raushel (1984) Arch. Biochem. Biophys. 232, 520-525] for the argininosuccinate lyase with the essential histidine residue close to the arginine-binding domain of delta-crystallin. L-Citrulline, after binding to this domain, might form an extra hydrogen bond with the essential histidine residue.


1966 ◽  
Vol 101 (3) ◽  
pp. 781-791 ◽  
Author(s):  
LN Cartwright ◽  
RP Hullin

1. Two enzymes that catalyse the reduction of glyoxylate to glycollate have been separated and purified from a species of Pseudomonas. Their molecular weights were estimated as 180000. 2. Reduced nicotinamide nucleotides act as the hydrogen donators for the enzymes. The NADH-linked enzyme is entirely specific for its coenzyme but the NADPH-linked reductase shows some affinity towards NADH. 3. Both enzymes convert hydroxypyruvate into glycerate. 4. The glyoxylate reductases show maximal activity at pH6.0-6.8, are inhibited by keto acids and are strongly dependent on free thiol groups for activity. 5. The Michaelis constants for glyoxylate and hydroxypyruvate were found to be of a high order. 6. The reversibility of the reaction has been demonstrated for both glyoxylate reductases and the equilibrium constants were determined. 7. The reduction of glyoxylate and hydroxypyruvate is not stimulated by anions.


Sign in / Sign up

Export Citation Format

Share Document