Control of RNA Synthesis by Amino Acids in Landschutz Ascites Tumor Cells

1974 ◽  
Vol 52 (10) ◽  
pp. 867-876 ◽  
Author(s):  
Paul Jolicoeur ◽  
Fernand Labrie

Landschutz cells incubated in amino acid-deficient medium for 2.5 h show a markedly reduced incorporation of [3H]uridine into 18 S and 28 S cytoplasmic ribosomal RNA (rRNA) and into 28 S, 32 S, and 36 S nuclear RNA measured during the last 90 min of incubation, whereas the radioactivity associated with 45 S pre-rRNA is not affected. Ten-minute pulse-labeling and 15-min pulse-chase experiments show that amino acid starvation inhibits both the synthesis and processing of 45 S pre-rRNA. Amino acid starvation has no significant effect on the labeling of the nucleotide pools. This effect of amino acids was specific for rRNA since the synthesis of 4 S and 5 S cytoplasmic RNA separated on polyacrylamide gels and of polysomal mRNA analyzed on sucrose gradients was not significantly affected during amino acid starvation. These data also indicate that RNA synthesis is non-coordinated in Landschutz cells. Among the 13 amino acids essential for growth of these cells, arginine and glutamine appear to be mainly responsible for the inhibition of synthesis of 18 S and 28 S rRNA measured during incubation in complete amino acid-deficient medium. The removal of any one of the other amino acids has a small inhibitory effect on the incorporation of [3H]uridine into rRNA and their effect on the synthesis of 18 S rRNA is more pronounced than on that of 28 S rRNA. Such effect results in an unbalanced production of these two ribosomal RNA species.

1975 ◽  
Vol 53 (9) ◽  
pp. 975-988 ◽  
Author(s):  
Danny P. Singh ◽  
Hérb. B. LéJohn

Transport of amino acids in the water-mould Achlya is an energy-dependent process. Based on competition kinetics and studies involving the influence of pH and temperature on the initial transport rates, it was concluded that the 20 amino acids (L-isomers) commonly found in proteins were transported by more than one, possibly nine, uptake systems. This is similar to the pattern elucidated for some bacteria but unlike those uncovered for all fungi studied to date. The nine different transport systems elucidated are: (i) methionine, (ii) cysteine, (iii) proline, (iv) serine–threonine, (v) aspartic and glutamic acids, (vi) glutamine and asparagine, (vii) glycine and alanine, (viii) histidine, lysine, and arginine, and (ix) phenylalanine–tyrosine–tryptophan and leucine–isoleucine–valine as two overlapping groups. Transport of all of these amino acids was inhibited by azide, cyanide, and its derivatives and 2,4-dinitrophenol. These agents normally interfere with metabolism at the level of the electron transport chain and oxidative phosphorylation. Osmotic shock treatment of the cells released, into the shock fluid, a glycopeptide that binds calcium as well as tryptophan but no other amino acid. The shocked cells are incapable of concentrating amino acids, but remain viable and reacquire this capacity when the glycopeptide is resynthesized.Calcium played more than a secondary role in the transport of the amino acids. When bound to the membrane-localized glycopeptide, it permits concentrative transport to take place. However, excess calcium can inhibit transport which can be overcome by chelating with citrate. Calculations show that the concentration of free citrate is most important. At low citrate concentrations (less than 1 mM) in the absence of exogenously supplied calcium, enhancement of amino acid transport occurs. At high concentrations (greater than 5 mM), citrate inhibits but this effect can be reversed by titrating with calcium. Evidently, the glycopeptide acts as a calcium sink to regulate the concentration of calcium made available to the cell for its membrane activities.N6-(Δ2-isopentenyl) adenine (a plant growth 'hormone') and analogues mimic the inhibitory effect of citrate and bind to the glycopeptide as well. Replot data for citrate and N6-(Δ2-isopentyl) adenine inhibition indicate that both agents have no more than one binding constant. These results implicate calcium, glycopeptide, and energy-dependent transport of solutes in some, as yet undefinable, way.


2018 ◽  
Vol 36 (2) ◽  
pp. 65-79 ◽  
Author(s):  
Mark Thomas ◽  
Tanja Davis ◽  
Ben Loos ◽  
Balindiwe Sishi ◽  
Barbara Huisamen ◽  
...  

Development ◽  
1972 ◽  
Vol 28 (2) ◽  
pp. 367-384
Author(s):  
C. C. Wylie

This paper seeks to extend our knowledge about RNA synthesis in early embryogenesis to the domestic fowl, Gallus domesticus. Using this species for research, apart from increasing our knowledge of higher vertebrate embryology, has certain advantages such as rapid uptake of isotopic precursors and ease of microdissection in culture. The following results are presented: (1) The cell number in the whole chick embryos is shown to be increasing logarithmically between the time of laying and the early neurula stage; with a doubling time of 7·4 h. (2) The onset of ribosomal RNA synthesis has been shown to be during mid-cleavage of the chick embryo, while development is taking place in the oviduct and uterus of the mother. (3) In a cumulative labelling experiment, embryos were labelled at the unincubated-egg stage, allowed to develop to various morphological stages up to neurulation, and their cytoplasmic RNA prepared and analysed by gel electrophoresis. (4) The specific activity of the precursor pool for RNA synthesis was measured at several stages, using the same labelling conditions, and the results were used to quantitate the RNA synthesis from the incorporated radioactivity. (5) Using these techniques, it was found that newly synthesized cytoplasmic RNA accumulates steadily in the whole chick embryo, reaching a level of 104 μg by the early neurula stage. On a per cell basis, however, the amount of newly synthesized cytoplasmic RNA seems to decrease slightly. These findings are discussed in the light of present knowledge about embryos of other vertebrates and certain invertebrates.


2020 ◽  
Vol 48 (6) ◽  
pp. 3071-3088
Author(s):  
Matthew R McFarland ◽  
Corina D Keller ◽  
Brandon M Childers ◽  
Stephen A Adeniyi ◽  
Holly Corrigall ◽  
...  

Abstract During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.


1965 ◽  
Vol 6 (2) ◽  
pp. 304-309 ◽  
Author(s):  
E. C. R. Reeve ◽  
J. O. Bishop

A multi-step Chloramphenicol (CM)-resistant derivative of an RC-stringent strain of Escherichia coli auxotrophic for threonine and leucine was resistant also to Aureomycin (AM) and Puromycin (PM). All three antibiotics released the repression of RNA synthesis due to amino acid starvation in the CM-sensitive parent strain, their relative activities being about 1:10:100 for AM: CM: PM. High doses of AM and CM failed to induce RNA synthesis. The CM-resistant strain required greater concentrations of each antibiotic than the sensitive strain to induce the same level of RNA synthesis, and appeared to be about one hundred times, ten times and five times more resistant to CM, AM and PM, respectively, than the sensitive strain.


1969 ◽  
Vol 28 (02) ◽  
pp. 248-254 ◽  
Author(s):  
R. T. Hunt ◽  
A. R. Hunter ◽  
A. J. Munro

Analysis of the effects of amino acid starvation in reticulocytes is comparatively simple compared with similar analysis in other tissues of whole organisms. This is mainly because of the absence of RNA synthesis in reticulocytes, but also because the bulk of the protein being synthesized is haemoglobin, a protein whose structure is completely known. The absence of RNA synthesis eliminates complications that would otherwise arise through RNA-mediated control mechanisms which in turn might mask the effects of amino acid starvation on the protein synthetic machinery in the cells (Munro, 1969). Consequently reticulocytes have been used to study the effect of amino acid starvation on the actual process of protein synthesis and assembly.


1976 ◽  
Vol 231 (3) ◽  
pp. 848-853 ◽  
Author(s):  
Stephens ◽  
RF Woolson ◽  
AR Cooke

The effect of three monosaccharides, three disaccharides, two dipeptides, combinations of tryptophan with two hexoses, one hexitol, and two amino acids ongastric emptying was studied in dogs to further define the samll intestinal receptors responsive to osmolytes and tryptophan. On a molar basis the disacchardies and dipeptides were almost twice as potent as their respective constituent monosaccharides or amino acids implying that the osmoreceptor is deep to the brush border disaccharidases and cytosol dipeptidases. Tryptophan probably acts by a mechanism different from the osmoreceptor since slowing of gastric emptying by tryptophan was inhibited by methionine which has no effect on a stimulant of the osmoreceptor mechanism. Lysine unlike methionine does not share the neutral amino acid transport pathway with tryptophan. Lysine did not change the inhibitory effect of tryptophan on gastric emptying. This imples that transport of tryptophan into the intestinal cell is necessary for its slowing effect. Glucose and galactose also inhibited the tryptophan effect whereas a nonabsorbed hexitor, mannitol, was without effect. Interference by the hexoses was also probably by competition with tryptophan for transport into the cell. These studies further indicate that the tryptophan receptor is different from the osmoreceptor.


1976 ◽  
Vol 154 (2) ◽  
pp. 541-552
Author(s):  
J E. M. Midgley

The synthesis of ribosomes was compared in rel+ and rel- strains of Escherichia coli undergoing “stepdown” in growth from glucose medium to one with lactate as principal carbon source. Two strains (CP78 and CP79), isogenic except for rel, showed similar behaviour with respect to (1) the kinetics of labelling total RNA and ribosomes with exogenous uracil, (2) the proportion of newly formed protein that could be bound with nascent rRNA in mature ribosomes, and (3) the rate of induction of enzymically active β-galactosidase (relative to the rate of ribosome synthesis). It was concluded that, as there was no net accumulation of RNA during stepdown in either strain, rRNA turnover must be occurring at a high rate. The general features of ribosome maturation in rel+ and rel- cells were almost identical with those found in auxotrophic rel+ organisms starved of required amino acids. In both cases, there was a considerable delay in the maturation of new ribosomal particles, owing to a relative shortfall in the rate of synthesis of ribosome-associated proteins. Only about 4-5% of the total protein labelled during stepdown was capable of binding with newly formed rRNA. This compared with 3.5% for rel+ and 0.5% for rel- auxotrophs during amino acid starvation. The turnover rate for newly formed mRNA and rRNA was virtually the same in “stepped-down” rel+ and rel- strains and was similar to that of the same fraction in amino acid-starved rel+ cells. The functional lifetime of mRNA was also identical. It seems that in the rel- strain many of the characteristics typical of the isogenic rel+ strain are displayed under these conditions, at least as regards the speed of ribosome maturation and the induction of β-galactosidase. Studies on the thermolability of the latter enzyme induced during stepdown indicate that inaccurate translation, which occurs in rel- strains starved for only a few amino acids, is less evident in this situation than in straightforward amino acid deprivation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2937-2937
Author(s):  
Antonio R Lucena-Araujo ◽  
Bárbara A Santana-Lemos ◽  
Carol H Thome ◽  
Germano A Ferreira ◽  
Davide Ruggero ◽  
...  

Abstract The X-linked form of dyskeratosis congenita (X-DC) is caused by mutations in DKC1, which encodes for dyskerin: a putative pseudouridine synthase that mediate the posttranscriptional modification of ribosomal RNA (rRNA) through the conversion of uridine (U) to pseudouridine (Ψ). Patients with X-DC display defects in the pseudouridylation of ribosomal RNA that leads to translational upregulation of IRES-containing mRNAs and affects the affinity of the ribosome for these mRNAs. Studies in vivo and in vitro suggest that the pseudouridylation of ribosomal RNA is the underlying mechanism responsible for the enhanced susceptibility to cancer in these patients. Ruggero et al. have previously reported (Ruggero et al. Science. 2003 Jan 10;299(5604):259-62) that hypomorphic Dkc1m (Dkc1m) mice present pancytopenia associated with hypocellularity of the bone marrow (BM) and increased susceptibility to cancer, therefore constituting a reliable model to study the effect of impaired ribogenesis on hematopoiesis and oncogenesis. However, the cellular and molecular mechanisms leading to BM failure in X-DC remain unknown. Here, we describe the in vivo analysis of the proliferation rate of hematopoietic progenitors in Dkc1m mice and compare the proteomic profile of hematopoietic progenitors between Dkc1m mice and wild-type (WT) controls. For in vivo proliferation assays, 1mg of bromodeoxyuridine (BrdU) was injected intraperitoneally, every 6 hours during 24 hours, in 16 mice (eight WT and eight Dkc1m), and BM cells were harvested by flushing bone cavity, followed by immunofluorescence staining of incorporated BrdU and flow cytometric analysis. No differences were detected in the number of lineage-negative (Lin−), Sca1-positive, c-kit-negative (LSK−) cells, multipotent precursors (MPP), common myeloid progenitors (CMP), common lymphoid progenitors (CLP) and immature B (B lin) and erythroid (Eryt) cells between Dkc1m and WT mice. Nevertheless, the BrdU incorporation was lower in LSK cells and CMPs from Dkc1m mice (P<0.05), indicating a lower proliferation rate. Using in vitro stable isotope labelling of amino acids (SILAC) hematopoietic progenitor cells were cultured in complete medium containing 10% fetal bovine serum and cytokines (6 ng/ml mIL-3, 10 ng/ml mIL-6 and 100 ng/ml mSCF). Of note, SILAC is one of the most applied approaches for quantitative proteomics, which uses labeled amino acids contain atoms of different isotopes in cell culture. Briefly, one cell population is cultured in unlabeled medium (control), while a second population is grown in medium substituted with a heavy amino acid (usually arginine 13C and/or lysine 15N). After 2-3 weeks culture, murine hematopoietic progenitors were collected and equal amounts of cells from Dkc1m and WT mice (labeled or not with heavy amino acid) were mixed for protein extraction and analyses. Using this approach, we identified about 3,500 differentially expressed proteins; including proteins related to mRNA assembling and splicing, chromatin remodeling, apoptosis and cell cycle arrest. Interestingly, one of the most differentially expressed proteins between WT and Dkc1m mice (WT light /Dkc1m heavy ratio: 18-fold) was the Serine/arginine-rich splicing factor 4(Srsf4); a member of the splicing factor family (SRSF1, SRSF3 and SRSF4) frequently associated with alternative splicing of genes related to hematopoietic progenitor cell differentiation. Altogether, our preliminary results reveal defects in the transcription/translation of specific mRNAs in Dkc1m cells. Additionally, it is conceivable that the down-regulation of Srsf4 protein could be associated with the low proliferative rate in DKC1m mice and explain the impairment of hematopoiesis in X-DC patients. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document