Photoresponsive character in double-doped La2/3(Ca2/3Sr1/3)1/3MnO3 thin film

2005 ◽  
Vol 83 (7) ◽  
pp. 699-704 ◽  
Author(s):  
Y. Wang ◽  
R Ren ◽  
C Chen ◽  
D Ren ◽  
K Jin ◽  
...  

A Ca, Sr double-doped La2/3(Ca2/3Sr1/3)1/3MnO3 thin film with a thickness of about 60~nm was deposited on (100) LaAlO3 substrates using the RF magnetron sputtering method from the bulk compound prepared using the solid-state reaction method. The experimental results show that a phase transition from the ferromagnetic metallic state to the paramagnetic insulating state occurs at 341 K (near to Tp, the highest peak temperature). The R–T curve deviation of the thin film with the application of CW laser is dramatic in the low-temperature range and Δ R/R is positive. At 276 K, the Δ R/R reaches the maximum, about 41 %, and the temperature of the photo-induced resistance maximum of this double-doped thin film appears near to room temperature range, which offers a new method for the application of CMR photo-electric devices.PACS Nos.: 78.66.–w, 81.07–b

2021 ◽  
Author(s):  
Hang Yu ◽  
Wenwen Bu ◽  
Zijia Wang ◽  
Zhuoyue Zhao ◽  
Mehwish Jadoon ◽  
...  

Polyoxometalate nanoparticles were synthesized via a concise solid-state reaction method by directly grinding silver nitrate and the polyoxometalate (NH4)5H6PMo4V8O40 at room temperature without the assistance of a surfactant.


2016 ◽  
Vol 10 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Mohamed Afqir ◽  
Amina Tachafine ◽  
Didier Fasquelle ◽  
Mohamed Elaatmani ◽  
Jean-Claude Carru ◽  
...  

SrBi1.8Ce0.2Nb2O9 (SBCN) and SrBi1.8Ce0.2Ta2O9 (SBCT) powders were prepared via solid-state reaction method. X-ray diffraction analysis reveals that the SBCN and SBCT powders have the single phase orthorhom-bic Aurivillius structure at room temperature. The contribution of Raman scattering and FTIR spectroscopy of these samples were relatively smooth and resemble each other. The calcined powders were uniaxially pressed and sintered at 1250?C for 8 h to obtaine dense ceramics. Dielectric constant, loss tangent and AC conductivity of the sintered Ce-doped SrBi2Nb2O9 and SrBi2Ta2O9 ceramics were measured by LCR meter. The Ce-doped SBN (SBCN) ceramics have a higher Curie temperature (TC) and dielectric constant at TC (380?C and ?? ~3510) compared to the Ce-doped SBT (SBCT) ceramics (330?C and ?? ~115) when measured at 100Hz. However, the Ce-doped SBT (SBCT) ceramics have lower conductivity and dielectric loss.


2017 ◽  
Vol 126 (1B) ◽  
pp. 147
Author(s):  
Nguyen Thi Thuy

<p><strong>Abstract: </strong>LaFeO<sub>3</sub> system with doped Ti, Co, Cu was manufactured by solid state reaction method, it was sintered at 1250<sup>0</sup>C and 1290<sup>0</sup>C in 10 hours with a heating rate of 3<sup>0</sup>C/min. Using X-ray diffraction and Scanning Electron Microscope (SEM) to examine the structure, it reveals that samples are single-phase and orthogonal-perovskite structure describing by the Pnma space group, the unit cell volume of the samples increases when Ti, Co, Cu are doped to replace ion Fe<sup>+3</sup>. The size of particle increase while raising the temperature of sintering. Measuring the resistance which depends on temperature between the room temperature and 1000K, it can be seen that when doping Co, Cu with the nominal component La(Fe<sub>0,2</sub>Co<sub>0,2</sub>Ti<sub>0,6</sub>)O<sub>3</sub> and La(Fe<sub>0,4</sub>Cu<sub>0,1</sub>Ti<sub>0,5</sub>)O<sub>3 </sub>, the conductivity of samples increases respectively. Especially, the conductivity of Cu doped sample is higher than two other samples, and reach the highest conductivity at about 900<sup>0</sup>C, Seebeck coefficient S of La(Fe<sub>0.6</sub>Ti<sub>0.4</sub>)O<sub>3</sub> can be change from positive to negative at the temperature of around 700<sup>0</sup>C.</p>


2013 ◽  
Vol 5 (4) ◽  
pp. 1310-1316 ◽  
Author(s):  
Chunhui Miao ◽  
Tongfei Shi ◽  
Guoping Xu ◽  
Shulin Ji ◽  
Changhui Ye

2016 ◽  
Vol 848 ◽  
pp. 222-227 ◽  
Author(s):  
Zi Jun Song ◽  
Lian Jun Wang ◽  
Wan Jiang ◽  
Wei Luo

Oxide ceramic is a kind of environmental friendly materials, which has attracted more and more interests for its bunch of advantages such as sound chemical, thermal stability, simple synthetic process, cheap price, harmless and safety. Therefore, Oxide ceramic will be a promising material in the future. In this work, polycrystalline samples of CuAlO2 were prepared by a solid state reaction method. The mixture of pure CuO and Al2O3 powders was firstly pressed under the pressure of 60 MPa, and then 200 MPa to prepare pellets of 5 mm thick and 10 mm in diameter. The green compacts were sintered at five different temperatures (1273 K, 1323 K, 1373 K, 1423 K, 1473 K) for various holding times (5 h, 10 h and 15 h) in the air and then the furnace cooled. The crystalline and microstructures of the sintered CuAlO2 bodies were detected by XRD and SEM. The properties of density, thermal conductivity were also investigated in detail. The experimental results show that CuAlO2 bodies were rhombohedral, belonging to R3m space group. It is found that the density and the thermal conductivity of CuAlO2 ceramics were significantly dependent on the sintering temperatures. The density and thermal conductivity increased with increasing the sintering temperatures. The thermal conductivity of samples sintered at 1273 and 1473 K with the same holding time (10 h) were 9.70 and 35.53 W/mk at the room temperature, 3.41 and 8.29 W/mk at 1100 K, respectively.


Sign in / Sign up

Export Citation Format

Share Document