Seismic passive earth pressure coefficients using the method of characteristics

2002 ◽  
Vol 39 (2) ◽  
pp. 463-471 ◽  
Author(s):  
Jyant Kumar ◽  
Sridhar Chitikela

The method of characteristics was used to generate passive earth pressure coefficients for an inclined wall retaining cohesionless backfill material in the presence of pseudostatic horizontal earthquake body forces. The variation of the passive earth pressure coefficients Kpq and Kpγ with changes in horizontal earthquake acceleration coefficient due to the components of soil unit weight and surcharge pressure, respectively, has been obtained; a closed-form solution for Kpq is also provided. The passive earth resistance has been found to decrease sharply with an increase in the magnitude of horizontal earthquake acceleration. The computed passive earth pressure coefficients were found to be the lowest when compared to all of the previous solutions available in the literature.Key words: earth pressures, earthquakes, method of characteristics, retaining walls, sands.

2001 ◽  
Vol 38 (4) ◽  
pp. 876-881 ◽  
Author(s):  
Jyant Kumar

By taking the failure surface as a combination of the arc of a logarithmic spiral and a straight line, passive earth pressure coefficients in the presence of horizontal pseudostatic earthquake body forces have been computed for an inclined wall placed against cohesionless backfill material. The presence of seismic forces induces a considerable reduction in the passive earth resistance. The reduction increases with an increase in the magnitude of the earthquake acceleration. The effect becomes more predominant for loose sands. The obtained results compared well with those reported in the literature using curved failure surfaces. However, the results available in the literature on the basis of a planar failure surface are found to predict comparatively higher passive resistance.Key words: earth pressures, earthquakes, limit equilibrium, plasticity, retaining walls, sands.


2021 ◽  
pp. 108128652110545
Author(s):  
S Kiana Naghibzadeh ◽  
Noel Walkington ◽  
Kaushik Dayal

Accretion and ablation, i.e., the addition and removal of mass at the surface, are important in a wide range of physical processes, including solidification, growth of biological tissues, environmental processes, and additive manufacturing. The description of accretion requires the addition of new continuum particles to the body, and is therefore challenging for standard continuum formulations for solids that require a reference configuration. Recent work has proposed an Eulerian approach to this problem, enabling side-stepping of the issue of constructing the reference configuration. However, this raises the complementary challenge of determining the stress response of the solid, which typically requires the deformation gradient that is not immediately available in the Eulerian formulation. To resolve this, the approach introduced the elastic deformation as an additional kinematic descriptor of the added material, and its evolution has been shown to be governed by a transport equation. In this work, the method of characteristics is applied to solve concrete simplified problems motivated by biomechanics and manufacturing. Specifically, (1) for a problem with both ablation and accretion in a fixed domain and (2) for a problem with a time-varying domain, the closed-form solution is obtained in the Eulerian framework using the method of characteristics without explicit construction of the reference configuration.


2016 ◽  
Vol 12 (2) ◽  
pp. 453-461 ◽  
Author(s):  
Yu-liang Lin ◽  
Xiao Yang ◽  
Guo-lin Yang ◽  
Yun Li ◽  
Lian-heng Zhao

2021 ◽  
Author(s):  
Christoph Schmüdderich ◽  
Franz Tschuchnigg ◽  
Helmut F. Schweiger

AbstractDetermination of earth pressures is one of the fundamental tasks in geotechnical engineering. Although many different methods have been utilized to present passive earth pressure coefficients, the influence of non-associated plasticity on the passive earth pressure problem has not been discussed intensively. In this study, finite-element limit analysis and displacement finite-element analysis are applied for frictional materials. Results are compared with selected data from literature in terms of passive earth pressure coefficients, shape of failure mechanism and robustness of the numerical simulation. The results of this study show that passive earth pressure coefficients determined with an associated flow rule are comparable to the Sokolovski solution. However, comparison with a non-associated flow rule reveals that passive earth pressure coefficients are significantly over predicted when following an associated flow rule. Moreover, this study reveals that computational costs for determination of passive earth pressure are considerably larger following a non-associated flow rule. Additionally, the study shows that numerical instabilities arise and failure surfaces become non-unique. It is shown that this problem may be overcome by applying the approach suggested by Davis (Soil Mech 341–354, 1968).


2011 ◽  
Vol 48 (5) ◽  
pp. 767-780 ◽  
Author(s):  
Armando N. Antão ◽  
Teresa G. Santana ◽  
Mário Vicente da Silva ◽  
Nuno M. da Costa Guerra

A three-dimensional (3D) numerical implementation of the limit analysis upper-bound theorem is used to determine passive horizontal earth-pressure coefficients. An extension technique allowing determination of the 3D passive earth pressures for any width-to-height ratios greater than 7 is presented. The horizontal passive earth-pressure coefficients are presented and compared with solutions published previously. Results of the ratio between the 3D and two-dimensional horizontal passive earth-pressure coefficients are shown and found to be almost independent of the soil-to-wall friction ratio. A simple equation is proposed for calculating this passive earth-pressure ratio.


Sign in / Sign up

Export Citation Format

Share Document