A CO-ROTATIONAL FORMULATION FOR GEOMETRICALLY NONLINEAR FINITE ELEMENT ANALYSIS OF SPATIAL BEAMS

Author(s):  
L. Jiang ◽  
M.W. Chernuka

A co-rotational procedure is presented in this paper for handling arbitrarily large three-dimensional rotations associated with geometrically nonlinear analysis of spatial beam structures. This procedure has been incorporated into two commonly used 3-D beam elements, the 2-node cubic beam element and the 3-node superparametric beam element, in our in-house general purpose finite element program, VAST. In the present procedure, the element tangent stiffness matrices are generated by using the standard updated Lagrangian formulation, while a co-rotational formulation is employed to update the internal force vectors during the Newton-Raphson iterations, A number of example problems have been analyzed and the result are in good agreement with analytical or published numerical solutions.

2010 ◽  
Vol 452-453 ◽  
pp. 509-512
Author(s):  
Yao Guo Zhu ◽  
Qing Xiang Wang

Nowadays embedded parts which connect steel members with concrete structures have frequently emerged in civil engineering; however the existing design code for embedded parts cannot satisfy the increasing demand of engineering as it was derived from limited experiments. In the paper, a finite element study on embedded parts with big-diameter reinforcing bars under shear force is conducted. The aim of the study was to fully investigate the mechanical performances of embedded parts under shear force using a three-dimensional finite element analysis with the help of a commercial software ANSYS. Cross-section internal force of anchor bar, embedded part deformation, interaction force between anchor bar and concrete, and friction force were investigated in order to well know the system response. The results show that the shear capacity of embedded part obtained from finite element analysis is conservative.


2012 ◽  
Vol 594-597 ◽  
pp. 2723-2726
Author(s):  
Wen Shan Lin

In the present study, the constitutive law of the deformation theory of plasticity has been derived. And that develop the two-dimensional and three-dimensional finite element program. The results of finite element and analytic of plasticity are compared to verify the derived the constitutive law of the deformation theory and the FEM program. At plastic stage, the constitutive laws of the deformation theory can be expressed as the linear elastic constitutive laws. But, it must be modified by iteration of the secant modulus and the effective Poisson’s ratio. Make it easier to develop finite element program. Finite element solution and analytic solution of plasticity theory comparison show the answers are the same. It shows the derivation of the constitutive law of the deformation theory of plasticity and finite element analysis program is the accuracy.


2000 ◽  
Vol 123 (3) ◽  
pp. 397-404 ◽  
Author(s):  
H. Utsunomiya ◽  
P. Hartley ◽  
I. Pillinger

It is normal industrial practice to roll round edged flat wires from round circular wires using plain rolls. Although this is not a complex type of metal forming process, the internal deformation is highly three-dimensional. It is important to be able to determine the lateral spread, elongation and final profile precisely. In this paper, this process has been analyzed using an elastic-plastic finite element program. Firstly, algorithms for integrating the constitutive equations, i.e., return mapping algorithms, are evaluated to determine the most accurate technique. Then, the influences of friction and reduction in thickness on the deformation characteristics are investigated. The lateral spread and the radius of curvature of the free surface are quantitatively in reasonable agreement with those obtained from empirical formulas. The lateral spread increases with friction and with reduction. The variation of elongation in the roll bite is investigated in detail. It is found that the elongation is not uniformly distributed across the cross section. After passing the roll gap, the distribution is compensated by the elastic recovery of wire, otherwise it may cause edge waves.


1981 ◽  
Vol 103 (3) ◽  
pp. 214-218 ◽  
Author(s):  
B. V. Kiefer ◽  
P. D. Hilton

A three-dimensional, elastic-plastic finite element program is developed and applied to analyze the stress field in a plate containing a through crack. The center cracked plate is subjected to uniform tensile loading which results in mode I opening of the crack surfaces. Transverse variations of the opening tensile stress component and of the effective stress (von Mises) in the vicinity of the crack front are presented. They clearly demonstrate the three-dimensional nature of this problem with distributions that depend on specimen thickness. For thinner plates, the plastic deformation concentrates near the plate surfaces while the normal stress is largest in the plate interior. In thicker plates the deformation and normal stress fields are more uniform in the plate interior near the crack front, but they develop a rapid boundary layer-type variation in the vicinity of the plate surfaces.


1988 ◽  
Vol 16 (4) ◽  
pp. 249-273 ◽  
Author(s):  
J. P. Chang ◽  
K. Satyamurthy ◽  
N. T. Tseng

Abstract The finite element analysis of tires under a vertical footprint load requires the use of three-dimensional models. The excessive CPU time required for such models, especially when the tire construction is considered in detail, makes parametric studies difficult and time-consuming. Therefore, one of the principal objectives of finite element program development is to provide an efficient tool for the three-dimensional analysis of tires so that it can be integrated into the design process effectively. In the present study, a systematic finite element procedure is developed for solving loaded tire problems. The principal elements of this procedure are an efficient pre-processor for input generation, a multipoint constraint option to allow the user to exploit any existing symmetry in the problem, and a procedure for generating initial conditions from axisymmetric analyses. This procedure can be used to conduct parametric studies on loaded tires by using a rather coarse mesh and large load steps, thus leading to a significant reduction in CPU time, with a minimum sacrifice in solution accuracy. The efficiency of this procedure is illustrated with the analysis of a radial automobile tire.


1990 ◽  
Vol 112 (3) ◽  
pp. 350-354 ◽  
Author(s):  
T. A. Vest ◽  
M. S. Darlow

A portion of the results from a previous investigation into the structural behavior of hollow conical sections has been used to develop a method of correcting the conical beam element used in modern rotordynamic programs. The modification is made by altering the local value of the Young’s modulus so that the equations used in the conical element produce a bending flexibility which corresponds to that determined from detailed, three-dimensional finite element models. The use of this modification produces substantial improvement in the prediction of the first five natural frequencies of a hollow nonrotating shaft containing two opposed conical sections, for a range of wall thicknesses. The modification exhibits a length dependency which appears to be a main cause of the remaining discrepancies, though it is pointed out that the procedure is only a partial implementation of a more complete hybrid element to be presented later. Static experiments are also discussed, and the verification of a unique behavior characteristic of steep tapered sections is reported.


Author(s):  
Floyd Linayao ◽  
Raymond K. Yee

Traditionally speaking, prototype tires are designed, and then tested on an experimental basis to evaluate performance. Using finite element analysis instead allows tire design parameters to be modified at will and underperforming architectures to be ruled out. This paper characterizes the dynamic response of a tubeless pneumatic vehicle tire as it is exposed to sudden impact and determines conditions under which failure would occur. Three cases were studied using a 175SR14 passenger tire, since passenger tires are most commonly used and impacts are more substantial on smaller tires. ABAQUS finite element program was used to perform nonlinear transient dynamic three-dimensional finite element analyses for three commonly tire encountered conditions. The first case, direct curb impact, determined that a safe inflation pressure range for tire velocities exists between 10 and 60 km per hour (kph). The second case, angled curb impact, found a smaller range of 10 to 40kph. The third case, impact with a pothole, found that at low inflation pressures, less stress is produced at higher velocities; increasing inflation pressure results in a transition point, causing larger stresses to be produced at higher velocities. From these analyses, several conclusions are drawn: inflation pressures below 100KPa do not produce a useful relationship between tire velocity and stress; thicker sidewalls help shield the tire from impact failure; and it is better for the tire to accelerate past a pothole in the 30 to 70kph range.


2020 ◽  
Vol 26 ◽  
pp. 24-29
Author(s):  
Edita Dvořáková ◽  
Bořek Patzák

The exact description of the arbitrarily curved geometries, including conic sections, is an undeniable advantage of isogeometric analysis (IGA) over standard finite element method (FEM). With B-spline/NURBS approximation functions used for both geometry and unknown approximations, IGA is able to exactly describe beams of various shapes and thus eliminate the geometry approximation errors. Moreover, naturally higher continuity than standard C0 can be provided along the entire computational domain. This paper evaluates the performance of the nonlinear spatial Bernoulli beam adapted from formulation of Bauer et al. [1]. The element formulation is presented and the comparison with standard FEM straight beam element and fully three-dimensional analysis is provided. Although the element is capable of geometrically nonlinear analysis, only geometrically linear cases are evaluated for the purposes of this study.


1999 ◽  
Vol 66 (2) ◽  
pp. 460-467 ◽  
Author(s):  
S. H. Ju ◽  
R. E. Rowlands

A three-dimensional contact element based on the penalty function method has been developed for contact frictional problems with sticking, sliding, and separation modes infinite element analysis. A major advantage of this contact element is that its stiffness matrix is symmetric, even for frictional contact problems which have extensive sliding. As with other conventional finite elements, such as beam and continuum elements, this new contact element can be added to an existing finite element program without having to modify the main finite element analysis program. One is therefore able to easily implement the element into existing nonlinear finite element analysis codes for static, dynamic, and inelastic analyses. This element, which contains one contact node and four target nodes, can be used to analyze node-to-surface contact problems including those where the contact node slides along one or several target surfaces.


2015 ◽  
Vol 09 (02) ◽  
pp. 255-261 ◽  
Author(s):  
Ritesh Modi ◽  
Shivani Kohli ◽  
K. Rajeshwari ◽  
Shekhar Bhatia

ABSTRACT Objective: The aim of the study is to evaluate the stress distribution in tooth supported 5-unit fixed partial denture (FPD) having tooth as pier abutment using rigid and nonrigid connectors respectively, under simultaneous and progressive loading. Material and Methods: The three-dimensional (3D) finite element program (ANSYS software) was used to construct the mathematical model. Two 5-unit FPD'S were simulated, one with rigid connector and another one with nonrigid connector. For analysis, each of these models were subjected to axial and oblique forces under progressive loading (180, 180, 120, 120, 80 N force on first and second molars, premolars and canine respectively) and simultaneous loading (100, 100, 100, 100, 100 N force on first and second molars, premolars and canine respectively). Results: The rigid and nonrigid connector design have effect on stress distribution in 5-unit FPDs with pier abutments. Conclusion: Oblique forces produce more stresses than vertical forces. Nonrigid connector resulted in decrease in stress at the level of prosthesis and increase in stress at the level of alveolar crest.


Sign in / Sign up

Export Citation Format

Share Document