A REVIEW OF FORMULAE FOR AVERAGING PHYSICAL QUANTITIES (APPLICATION TO CALCULATION OF THE AVERAGE RADIUS OF TUBES)

2007 ◽  
Vol 31 (2) ◽  
pp. 235-242
Author(s):  
I. A. Stepanov

A new method for averaging physical quantities is discovered. It is shown that the traditional method of finding the average value of a physical quantity gives the wrong results when calculating the average radius of a tapering tube, the average flow velocity in the tube and the volume of liquid flow through the tapering tube. The new method of averaging gives the correct results. The new formula is applicable to many other processes, for example, for calculating the flow through tubes of arbitrary form or with time-dependent radius. At present, a neutral radius is used which leads to big discrepancies.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zhi-hui Ni ◽  
Qiang Zeng ◽  
Wu Li-chun

According to the previous studies of sediment carrying capacity, a new method of sediment carrying capacity on perturbed theory was proposed. By taking into account the average water depth, average flow velocity, settling velocity, and other influencing factors and introducing the median grain size as one main influencing factor in deriving the new formula, we established a new sediment carrying capacity formula. The coefficients were determined by the principle of dimensional analysis, multiple linear regression method, and the least square method. After that, the new formula was verified through measuring data of natural rivers and flume tests and comparing the verified results calculated by Cao Formula, Zhang Formula, Li Formula, Engelung-Hansen Formula, Ackers-White Formula, and Yang Formula. According to the compared results, it can be seen that the new method is of high accuracy. It could be a useful reference for the determination of sediment carrying capacity.


Author(s):  
Vokulova Yu.A. Vokulova ◽  
E.N. Zhulev

This article presents the results of studying the dimensional accuracy of the bases of complete removable prostheses made using a 3D printer and the traditional method. Bases of complete removable prostheses were made using an intraoral laser scanner iTero Cadent (USA) and a 3D printer Asiga Max UV (Australia). To study the dimensional accuracy of the bases of complete removable prostheses, we used the DentalCAD 2.2 Valletta software. The Nonparametric Wilcoxon W-test was used for statistical analysis of the obtained data. We found that the average value of the difference with the standard for bases made using digital technologies is 0.08744±0.0484 mm. The average value of the difference with the standard for bases made by the traditional method is 0.5654±0.1611 mm. Based on these data, we concluded that the bases of complete removable prostheses made using modern digital technologies (intraoral laser scanning and 3D printer) have a higher dimensional accuracy compared to the bases of complete removable prostheses made using the traditional method with a significance level of p<0.05 (Wilcoxon's W-test=0, p=0.031). Keywords: digital technologies in dentistry, digital impressions, intraoral scanner, 3D printing, ExoCAD, complete removable dentures.


During the last few years of his life Prof. Simon Newcomb was keenly interested in the problem of periodicities, and devised a new method for their investigation. This method is explained, and to some extent applied, in a paper entitled "A Search for Fluctuations in the Sun's Thermal Radiation through their Influence on Terrestrial Temperature." The importance of the question justifies a critical examination of the relationship of the older methods to that of Newcomb, and though I do not agree with his contention that his process gives us more than can be obtained from Fourier's analysis, it has the advantage of great simplicity in its numerical work, and should prove useful in a certain, though I am afraid, very limited field. Let f ( t ) represent a function of a variable which we may take to be the time, and let the average value of the function be zero. Newcomb examines the sum of the series f ( t 1 ) f ( t 1 + τ) + f ( t 2 ) f ( t 2 + τ) + f ( t 3 ) f ( t 3 + τ) + ..., where t 1 , t 2 , etc., are definite values of the variable which are taken to lie at equal distances from each other. If the function be periodic so as to repeat itself after an interval τ, the products are all squares and each term is positive. If, on the other hand, the periodic time be 2τ, each product will be negative and the sum itself therefore negative. It is easy to see that if τ be varied continuously the sum of the series passes through maxima and minima, and the maxima will indicated the periodic time, or any of its multiples.


2012 ◽  
Vol 163 ◽  
pp. 133-137
Author(s):  
Ao Yu Chen ◽  
Xu Dong Pan ◽  
Guang Lin Wang

Traditional method of buoy gauge design is rather complicated, so an advanced method by building and solving fluid mechanics equations is proposed in this paper. The curve of the taper pipe inner surface is calculated, according to different buoy gravity and diameter. In order to examine the effect of this improved method, an experiment is carried out. Results show that linear property of the buoy gauge improved by new method is excellent.


2018 ◽  
Vol 33 (4) ◽  
pp. 592-602
Author(s):  
Amanda Mattsson ◽  
Tetsu Uesaka

Abstract In end-use, containerboard is subjected to a variety of loading histories, such as seconds of loading/unloading, hours of vibration, days of creep load. The fundamental question is whether the commonly measured static strength represents “strength” under these conditions. Another question is, since those time-dependent failures are notoriously variable, how to describe the probabilistic aspect. This study concerns the characterisation of these different facets of “strength”. In our earlier work, we have investigated the theoretical framework for time-dependent, probabilistic failures, and identified three material parameters: (1) characteristic strength, {S_{c}}, representing short-term strength, (2) brittleness/durability parameter, ρ, and (3) reliability parameter, β. We have also developed a new method that allows us to determine all these parameters much faster than typical creep tests. Using the new method, we have started investigating effects of basic papermaking variables on the new material parameters. Among the samples tested, the parameter ρ varied from 20 to 50, and β from 0.5 to 1.0. This suggests that, even within the current papermaking practice, there is a wide operating window to tune these new material parameters. The future work is, therefore, to find specific manufacturing variables that can systematically change these new material parameters.


2011 ◽  
Vol 418-420 ◽  
pp. 1804-1807
Author(s):  
Li Li ◽  
Zheng Hui Tan ◽  
Jia Wen Liu

Traditional method for measuring liquid level of absorption tower in wet flue gas desulfurization (WFGD) system is introduced in this paper, and it's found that measuring accuracy of the method exists in large deviation. A new method is proposed to measure liquid level of absorption tower for this situation. The local test results show that not only measurement result of new method is more close to the actual liquid level than traditional method, but also using new method can save operation cost and ensure the safety, stability, and economic operation of WFGD system.


Humaniora ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 1114
Author(s):  
Wishnoebroto Wishnoebroto

Flipping a classroom is not only recording classroom lesson into a video and bringing homework into the classroom. It is a whole new method with a lot better result compared to the traditional method. In western countries such as the US, flipping a classroom is already becoming a new method adopted by many different schools and universities. This paper tries to explore the possibility of flipping a classroom for learning foreign language at BINUS University by comparing it with the recent practices and findings in the western countries. After the analysis it can be concluded that this method can be applied at BINUS University but on several conditions such as the improvement of infrastructures, and the teacher’s awareness and understanding to optimize their understanding about flipped learning. 


2020 ◽  
pp. 52-63
Author(s):  
M. Mullai*, K. Sangeetha, R. Surya, G. Madhan kumar, R. Jeyabalan ◽  
◽  
◽  
S. Broumi

This paper presents the problematic period of neutrosophic inventory in an inaccurate and unsafe mixed environment. The purpose of this paper is to present demand as a neutrosophic random variable. For this model, a new method is developed for determining the optimal sequence size in the presence of neutrosophic random variables. Where to get optimality by gradually expressing the average value of integration. The newsvendor problem is used to describe the proposed model.


Sign in / Sign up

Export Citation Format

Share Document