PERFORMANCE EVALUATION AND WAKE STUDY OF A MICRO WIND TURBINE

2011 ◽  
Vol 35 (1) ◽  
pp. 101-117 ◽  
Author(s):  
Graeme I. Comyn ◽  
David S. Nobes ◽  
Brian A. Fleck

In preparation for a study on icing of wind turbine blades, we tested a horizontal axis micro wind turbine in a low speed wind tunnel. The ratio of wind turbine rotor area to wind tunnel cross-sectional area resulted in highly blocked experimental configuration. The turbine was instrumented to measure rotational speed of the rotor, axial thrust and power output. Performance characteristics were calculated and compared with the manufacturer’s published data. In addition, the near wake of the turbine was measured with a Kiel probe. One dimensional axial momentum theory, including a modification that includes channel walls, was applied to determine power extracted from the wind by the rotor. The results were compared to actual power output and show that though the assumptions of the model over-predict power by 50 % the basic trend is followed.

2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.


Author(s):  
M. McGugan ◽  
G. Pereira ◽  
B. F. Sørensen ◽  
H. Toftegaard ◽  
K. Branner

The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind.


Author(s):  
Erin K. Clarke ◽  
Sylvester Abanteriba

This paper examines the impact on the power generation capacity of a wind turbine as a result of the modification of the shape of the blades of an existing wind turbine. The modification involves curving the blades in the direction of rotation resulting in an increase in generated lift and therefore an increase in the power output of the wind turbine. Two three-bladed models were tested in a wind tunnel, one original straight-bladed model and one modified model both of which were 0.84 m in diameter. A study of the methods of flow visualization for a wind turbine in a wind tunnel was investigated. The corresponding results are presented. It was discovered that the china clay method of flow visualization in conjunction with a strobe light gave a good indication of the direction of the airflow over the turbine blades as did condensed oil droplets from a smoke wand which presented a very clear indication of the span-wise flow. It was concluded from the investigation that curving the blade into the direction of rotation on a wind turbine produced a greater power output at the same wind speed as an unmodified wind turbine.


2012 ◽  
Vol 260-261 ◽  
pp. 125-129
Author(s):  
Xin Zi Tang ◽  
Xu Zhang ◽  
Rui Tao Peng ◽  
Xiong Wei Liu

High lift and low drag are desirable for wind turbine blade airfoils. The performance of a high lift airfoil at high Reynolds number (Re) for large wind turbine blades is different from that at low Re number for small wind turbine blades. This paper investigates the performance of a high lift airfoil DU93-W-210 at high Re number in low Re number flows through wind tunnel testing. A series of low speed wind tunnel tests were conducted in a subsonic low turbulence closed return wind tunnel at the Re number from 2×105to 5×105. The results show that the maximum lift, minimum drag and stall angle differ at different Re numbers. Prior to the onset of stall, the lift coefficient increases linearly and the slope of the lift coefficient curve is larger at a higher Re number, the drag coefficient goes up gradually as angle of attack increases for these low Re numbers, meanwhile the stall angle moves from 14° to 12° while the Re number changes from 2×105to 5×105.


Author(s):  
Sayem Zafar ◽  
Mohamed Gadalla

A small horizontal axis wind turbine rotor was designed and tested with aerodynamically efficient, economical and easy to manufacture blades. Basic blade aerodynamic analysis was conducted using commercially available software. The blade span was constrained such that the complete wind turbine can be rooftop mountable with the envisioned wind turbine height of around 8 m. The blade was designed without any taper or twist to comply with the low cost and ease of manufacturing requirements. The aerodynamic analysis suggested laminar flow airfoils to be the most efficient airfoils for such use. Using NACA 63-418 airfoil, a rectangular blade geometry was selected with chord length of 0.27[m] and span of 1.52[m]. Glass reinforced plastic was used as the blade material for low cost and favorable strength to weight ratio with a skin thickness of 1[mm]. Because of the resultant velocity changes with respect to the blade span, while the blade is rotating, an optimal installed angle of attack was to be determined. The installed angle of attack was required to produce the highest possible rotation under usual wind speeds while start at relatively low speed. Tests were conducted at multiple wind speeds with blades mounted on free rotating shaft. The turbine was tested for three different installed angles and rotational speeds were recorded. The result showed increase in rotational speed with the increase in blade angle away from the free-stream velocity direction while the start-up speeds were found to be within close range of each other. At the optimal angle was found to be 22° from the plane of rotation. The results seem very promising for a low cost small wind turbine with no twist and taper in the blade. The tests established that non-twisted wind turbine blades, when used for rooftop small wind turbines, can generate useable electrical power for domestic consumption. It also established that, for small wind turbines, non-twisted, non-tapered blades provide an economical yet productive alternative to the existing complex wind turbine blades.


2016 ◽  
Author(s):  
Alexander R. Stäblein ◽  
Morten H. Hansen ◽  
David R. Verelst

Abstract. Coupling between bending and twist has a significant influence on the aeroelastic response of wind turbine blades. The coupling can arise from the blade geometry (e.g. sweep, prebending or deflection under load) or from the anisotropic properties of the blade material. Bend-twist coupling can be utilised to reduce the fatigue loads of wind turbine blades. In this study the effect of material based coupling on the aeroelastic modal properties and stability limits of the DTU 10 MW Reference Wind Turbine are investigated. The modal properties are determined by means of eigenvalue analysis around a steady-state equilibrium using the aero-servo-elastic tool HAWCStab2 which has been extended by a beam element that allows for fully coupled cross-sectional properties. Bend-twist coupling is introduced in the cross-sectional stiffness matrix by means of coupling coefficients that introduce twist for flapwise (flap-twist coupling) or edgewise (edge-twist coupling) bending. Edge-twist coupling can increase or decrease the damping of the edgewise mode relative to the reference blade, depending on the operational condition of the turbine. Edge-twist to feather coupling for edgewise deflection towards the leading edge reduces the inflow speed at which the blade becomes unstable. Flap-twist to feather coupling for flapwise deflections towards the suction side increase the frequency and reduce damping of the flapwise mode. Flap-twist to stall reduces frequency and increases damping. The reduction of blade root flapwise and tower bottom fore-aft moments due to variations in mean wind speed of a flap-twist to feather blade are confirmed by frequency response functions.


Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 25 ◽  
Author(s):  
Michael Parker ◽  
Douglas Bohl

The placement of a cylindrical body in a flow alters the velocity and pressure fields resulting in a local increase in the flow speed near the body. This interaction is of interest as wind turbine rotor blades could be placed in the area of increased wind speed to enhance energy harvesting. In this work the aerodynamic performance of two short aspect ratio (AR = 0.93) cylindrical bodies was evaluated for potential use in “accelerated wind” applications. The first cylinder was smooth with a constant diameter. The diameter of the second cylinder varied periodically along the span forming channels, or corrugations, where wind turbine blades could be placed. Experiments were performed for Reynolds numbers ranging from 1 × 105 to 9 × 105. Pressure distributions showed that the smooth cylinder had lower minimum pressure coefficients and delayed separation compared to the corrugated cylinder. Velocity profiles showed that the corrugated cylinder had lower peak speeds, a less uniform profile, and lower kinetic energy flux when compared to the smooth cylinder. It was concluded that the smooth cylinder had significantly better potential performance in accelerated wind applications than the corrugated cylinder.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Rulin Shen ◽  
Ryoichi S. Amano ◽  
Giovanni Lewinski ◽  
Arun Kumar Koralagundi Matt

Self-healing wind turbine blades offer a substantial offset for costly blade repairs and failures. We discuss the efforts made to optimize the self-healing properties of wind turbine blades and provide a new system to maximize this offset. Copper wire coated by paraffin wax was embedded into fiber-reinforced polymer (FRP) samples incorporated with Grubbs' first-generation catalyst. The wires were extracted from cured samples to create cavities that were then injected with the healing agent, dicyclopentadiene (DCPD). Upon sample failure, the DCPD and catalyst react to form a thermosetting polymer to heal any crack propagation. Three-point bending flexural tests were performed to obtain the maximum flexural strengths of the FRP samples before and after recovery. Using those results, a hierarchy of various vascular network configurations was derived. To evaluate the healing system's effect in a real-life application, a prototype wind turbine was fabricated and wind tunnel testing was conducted. Using ultraviolet (UV) dye, storage and transport processes of the healing agent were observed. After 24 h of curing time, Raman spectroscopy was performed. The UV dye showed dispersion into the failure zone, and the Raman spectra showed the DCPD was polymerized to polydicyclopentadiene (PDCPD). Both the flexural and wind tunnel test samples were able to heal successfully, proving the validity of the process.


2022 ◽  
Author(s):  
Wasi U. Ahmed ◽  
Keshav Panthi ◽  
Giacomo Valerio Iungo ◽  
D. Todd Griffith ◽  
Mario Rotea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document