NUMERICAL SIMULATION OF MIXED CONVECTION WITHIN NANOFLUID-FILLED CAVITIES WITH TWO ADJACENT MOVING WALLS

2013 ◽  
Vol 37 (4) ◽  
pp. 1073-1089 ◽  
Author(s):  
Mohammad Hemmat Esfe ◽  
Ariyan Zare Ghadi ◽  
Mohammad Javad Noroozi

In this study, nanofluid flow and heat transfer in a cavity with two moving lids are investigated. Governing equations are solved by finite volume approach using SIMPLE algorithm over a staggered gird system. The results show that when the moving lids have opposing effect, the streamlines contain two main vortices. By increasing the Richardson number, intensity of the vortex complying with buoyancy force increases, while intensity of the other vortex decreases. When the moving lids have aiding effect, the streamlines contain one the primary dominant vortex in which its strength increases with increase of the buoyancy force. In this case, rate of heat transfer is more than other cases.

2018 ◽  
Vol 240 ◽  
pp. 03014
Author(s):  
Mikhail Sheremet ◽  
Ioan Pop

The combined effect of Brownian diffusion, thermophoresis and cavity inclination angle on natural convective heat transfer in an inclined porous enclosure has been studied numerically. Fluid containing nanoparticles of low concentration circulates inside the cavity under the effect of the buoyancy force. Governing equations with corresponding boundary conditions formulated using the non-dimensional stream function and vorticity variables have been solved by the finite difference method. An influence of the cavity inclination angle, Darcy and Nield numbers on nanofluid flow and heat transfer has been investigated. It has been found that high Nield numbers illustrate more equilibrium temperature distribution inside the porous cavity.


2017 ◽  
Vol 140 (4) ◽  
Author(s):  
Nadezhda S. Bondareva ◽  
Mikhail A. Sheremet ◽  
Hakan F. Oztop ◽  
Nidal Abu-Hamdeh

Natural convection of a water-based nanofluid in a partially open triangular cavity with a local heat source of constant temperature under the effect of Brownian diffusion and thermophoresis has been analyzed numerically. Governing equations formulated in dimensionless stream function and vorticity variables on the basis of two-phase nanofluid model with corresponding initial and boundary conditions have been solved by finite difference method. Detailed study of the effect of Rayleigh number, buoyancy-ratio parameter, and local heater location on fluid flow and heat transfer has been carried out. It has been revealed that an increase in the buoyancy force magnitude leads to homogenization of nanoparticles distribution inside the cavity. A growth of a distance between the heater and the cavity corner illustrates the heat transfer enhancement.


2019 ◽  
Vol 286 ◽  
pp. 08004
Author(s):  
B. Jamal ◽  
M. Boukendil ◽  
A. Abdelbaki ◽  
Z. Zrikem

The present study aims to investigate coupled heat transfer by natural convection and conduction through a concrete hollow brick. The governing equations for conservation of mass, momentum and energy are discretized by the finite volume approach and solved by the SIMPLE algorithm. The numerical simulations were conducted to investigate the effect of Rayleigh number (103≤ Ra ≤ 107) on the heat transfer and fluid flow within the structure.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Rajneesh Kumar ◽  
Anoop Kumar ◽  
Varun Goel

The ribbed three-dimensional solar air heater (SAH) model is numerically investigated to estimate flow and heat transfer through it. The numerical analysis is based on finite volume approach, and the set of flow governing equations has been solved to determine the heat transfer and flow field through the SAH. For detailed analysis, rib chamfer height ratio (e′/e) and rib aspect ratio (e/w), two innovative parameters, have been created and considered along with the commonly used roughness parameter, i.e., relative roughness height, e/D. The parameters e′/e, e/w, and e/D are varied from 0.0 to 1, 0.1 to 1.5, and 0.18 to 0.043, respectively, but the value of P/e is kept constant for the entire investigation at 12. A good match is seen in Nusselt number (Nu) and friction factor (f) by comparing the predicted results with the experimental ones. With the variation of roughness parameters, distinguishable change in Nu and f is obtained. The highest value of thermohydraulic performance parameter (TPP) observed is 2.08 for P/e, e′/e, e/w, and e/D values of 12, 0.75, 1.5, and 0.043, respectively, at Re of 17,100. The developed generalized equation for Nu and f has shown acceptable percentage deviation under the studied range of parameters.


1981 ◽  
Vol 103 (3) ◽  
pp. 566-572 ◽  
Author(s):  
C. Prakash ◽  
S. V. Patankar

An analysis is made of the fully developed laminar flow and heat transfer in vertical tubes with radial internal fins to determine the influence of the buoyancy forces. The governing equations for velocity and temperature are solved by a finite difference technique which incorporates a special scheme for treating the two coupled variables. Results are presented for a range of the Rayleigh number and for various values of the fin height and the number of fins. The buoyancy force is found to increase significantly both friction and heat transfer in the finned tube; augmentation factors in the range of 5 to 10 are encountered. The effect of buoyancy is particularly strong when the number of fins is small and the fins are short.


Author(s):  
Noura Ben Mansour ◽  
Nader Ben Cheikh ◽  
Brahim Ben Beya ◽  
Taieb Lili

Three dimensional steady state mixed convection in a lid driven cubical cavity heating from below has been investigated numerically. Two sided walls are maintained at a constant ambient temperature Ttop > Tbottom, while the vertical walls are thermally insulated. Governing equations expressing in a dimensionless form are solved by using finite element method. The Reynolds number is fixed at Re=100, while the Richardson number is varied from 0.001 to 10. Parametric studies focusing on the effect of the Richardson number on the fluid flow and heat transfer have been performed. The flow and heat transfer characteristics, expressed in terms of streamlines, isotherms and average wall Nusselt number are presented for the entire range of Richardson number considered. Multiple correlations in terms of the heat transfer rate and Richardson number has been established.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 148 ◽  
Author(s):  
Nur Irmawati Om ◽  
Rozli Zulkifli ◽  
P. Gunnasegaran

The influence of utilizing different nanofluids types on the liquid cold plate (LCP) is numerically investigated. The thermal and fluid flow performance of LCP is examined by using pure ethylene glycol (EG), Al2O3-EG and CuO-EG. The volume fraction of the nanoparticle for both nanofluid is 2%. The finite volume method (FVM) has been used to solved 3-D steady state, laminar flow and heat transfer governing equations. The presented results indicate that Al2O3-EG able to provide the lowest surface temperature of the heater block followed by CuO-EG and EG, respectively. It is also found that the pressure drop and friction factor are higher for Al2O3-EG and CuO-EG compared to the pure EG.


Author(s):  
Mohammad Amani ◽  
Pouria Amani ◽  
Mehdi Bahiraei ◽  
Mohammad Ghalambaz ◽  
Goodarz Ahmadi ◽  
...  

Author(s):  
Marcelo J. S. deLemos ◽  
Paulo H. S. Carvalho

This paper presents computations for natural convection within a porous cavity filled with a fluid saturated permeable medium. The finite volume method in a generalized coordinate system is applied. The walls are maintained at constant but different temperatures, while the horizontal walls are kept insulated. Governing equations are written in terms of primitive variables and are recast into a general form. Flow and heat transfer characteristics are investigated for two energy models and distinct solid-to-fluid thermal conductivity ratio.


Sign in / Sign up

Export Citation Format

Share Document