scholarly journals Numerical simulation of coupeld heat transfer through a concrete hollow brick

2019 ◽  
Vol 286 ◽  
pp. 08004
Author(s):  
B. Jamal ◽  
M. Boukendil ◽  
A. Abdelbaki ◽  
Z. Zrikem

The present study aims to investigate coupled heat transfer by natural convection and conduction through a concrete hollow brick. The governing equations for conservation of mass, momentum and energy are discretized by the finite volume approach and solved by the SIMPLE algorithm. The numerical simulations were conducted to investigate the effect of Rayleigh number (103≤ Ra ≤ 107) on the heat transfer and fluid flow within the structure.

Author(s):  
Shuichi Torii ◽  
Wen-Jei Yang ◽  
Naoko Iino

A theoretical study is performed to investigate unsteady thermal and fluid flow transport phenomena over vertical slot-perforated flat fins with heat sink, which are placed in a natural convection environment. Emphasis is placed on the effects of Rayleigh number and fin pitch on heat transfer performance and velocity and thermal fields. It is found from the study that (i) in the high Rayleigh number region, the alternating changes in the fluid flow take place for larger fin pitch, (ii) the alternating flow in the space area between two fins is mutually interacted by the corresponding one from the adjacent in-line plate fines, resulting in an amplification of heat transfer performance, and (iii) heat-transfer performance is intensified with an increase in the fin pitch, whose trend becomes larger in the higher Rayleigh number region considered here.


Author(s):  
M. Fayz-Al-Asad ◽  
M. J. H. Munshi ◽  
M.M.A. Sarker

The present study aims to analyze the natural convection flow and heat transfer in a wavy cavity with a single horizontal fin attached to its hot wall. Galerkin weighted residual finite element technique has been employed to solve the governing nonlinear dimensionless equations. The effects of model parameters like Rayleigh number, fin length and location on the fluid flow and heat transfer are investigated. The obtained results are exhibited graphically in terms of flow structure, temperature dispersion, velocity field, fin effectiveness, local Nusselt number, and average Nusselt number. It is observed that the different fin length and location have a substantial effect on flow structure and temperature field. Fin effectiveness is also studied and the highest fin effectiveness was found at fin length (L = 0.75). Besides, it is also found that the mean Nusselt number increases significantly with the increase of Rayleigh number and fin length. Wavy cavity becomes more effective on heat transfer behaviors and fluid flow than that of a square cavity.


2021 ◽  
Vol 39 (5) ◽  
pp. 1634-1642
Author(s):  
Syed Fazuruddin ◽  
Seelam Sreekanth ◽  
G Sankara Sekhar Raju

An exhaustive numerical investigation is carried out to analyze the role of an isothermal heated thin fin on fluid flow and temperature distribution visualization in an enclosure. Natural convection within square enclosures finds remarkable pragmatic applications. In the present study, a finite difference approach is performed on two-dimensional laminar flow inside an enclosure with cold side walls and adiabatic horizontal walls. The fluid flow equations are reconstructed into vorticity - stream function formulation and these equations are employed utilizing the finite-difference strategy with incremental time steps. The parametric study includes a wide scope of Rayleigh number, Ra, and inclination angle ϴ of the thin fin. The effect of different Rayleigh numbers ranging Ra = 104-106 with Pr=0.71 for all the inclination angles from 0°-360° with uniform rotational length of angle 450 of an inclined heated fin on fluid flow and heat transfer have been investigated. The heat transfer rate within the enclosure is measured by means of local and average Nusselt numbers. Regardless of inclination angles of the thin fin, a slight enhancement in the average Nusselt number is observed when Rayleigh number increased for both the cases of the horizontal and vertical position of the thin fin. When the fin has inclined no change in average Nusselt number is noticed for distinct Rayleigh numbers.


2013 ◽  
Vol 37 (4) ◽  
pp. 1073-1089 ◽  
Author(s):  
Mohammad Hemmat Esfe ◽  
Ariyan Zare Ghadi ◽  
Mohammad Javad Noroozi

In this study, nanofluid flow and heat transfer in a cavity with two moving lids are investigated. Governing equations are solved by finite volume approach using SIMPLE algorithm over a staggered gird system. The results show that when the moving lids have opposing effect, the streamlines contain two main vortices. By increasing the Richardson number, intensity of the vortex complying with buoyancy force increases, while intensity of the other vortex decreases. When the moving lids have aiding effect, the streamlines contain one the primary dominant vortex in which its strength increases with increase of the buoyancy force. In this case, rate of heat transfer is more than other cases.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1440
Author(s):  
C.J. Ho ◽  
G.N. Sou ◽  
Chi-Ming Lai

In this study, a numerical simulation of natural convection between two horizontal differentially heated pipelines inside a circular air-filled enclosure is performed using the finite difference method. The relevant parameters of the problem are the inclinations of the two cylinders (positioned vertically in this study, with the cold cylinder above the hot cylinder), the distance between cylinders and the Rayleigh number. The results show that transient irregular fluctuations in the flow field and heat transfer occur when the Rayleigh number increases or the distance between cylinders decreases. Under the current test conditions, increasing the Rayleigh number significantly increases the average heat transfer coefficient between the cold and hot cylinders.


2013 ◽  
Vol 483 ◽  
pp. 162-165
Author(s):  
Su Hou De ◽  
Zhang Yu Fu ◽  
Ji Yong Che ◽  
Xiao Long Wen

The flow of liquefied natural gas (LNG) which was coupled between heat transfer and fluid-flow in rib-tube was studied in this paper. Based on theoretical analysis, the model and wall-function were chosen to simulate the flow field of rib-tube, and the multiphase flow was described by the mixture model, in which the dispersed phase was defined by different velocity. In addtion, self-defining functions were used and governing equations were set up to solve the dispersed phase, and the result were compared with the experiment. The process of fluid-flow and heat exchange on rib-tube was simulated, and the contours of temperature, pressure, velocity, gas fraction were obtained, which showed that, the parameters of above changed when the temperature was rising and the LNG evaporating along the rib-tube, and a mixed process existed in the middle of the heat tube.


Author(s):  
Qiang Sun ◽  
Ioan Pop

Purpose – Steady-state free convection heat transfer and fluid flow of Cu-water nanofluid is investigated within a porous tilted right-angle triangular enclosure. The paper aims to discuss these issues. Design/methodology/approach – The flush mounted heater with finite size is placed on one right-angle wall. The temperature of the inclined wall is lower than the heater, and the rest of walls are adiabatic. The governing equations are obtained based on the Darcy's law, and the nanofluid model adopted is that by Tiwari and Das. The transformed dimensionless governing equations were solved numerically by finite difference method, and the solution for algebraic equations was obtained through successive under relaxation method. Findings – Investigations were made as the tilted angle of the cavity varies within under different values of Rayleigh number for a porous medium with and solid volume fraction parameter of Cu-water nanofluid with. It is found that the maximum value of the average Nusselt number is achieved with the highest Rayleigh number when the tilted angle of the cavity is 150°, while the minimum value of the average Nusselt number is obtained with the lowest Rayleigh number when the tilted angle of the cavity locates at 240°. As soon as the flow convection in the cavity is not significant, increasing can improve the value of, but opposite effects appear when flow convection becomes stronger. Originality/value – The present results are new and original for the heat transfer and fluid flow in a porous tilted triangle enclosure filled by Cu-water nanofluid. The results would benefit scientists and engineers to become familiar with the flow behaviour of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.


2019 ◽  
Vol 12 (2) ◽  
pp. 61-71 ◽  
Author(s):  
Barik AL-Muhjaa ◽  
Khaled Al-Farhany

The characteristics of the conjugate natural convection of (Al2O3-water) nanofluid inside differentially heated enclosure is numerically analyzed using COMSOL Multiphysics (5.3a). The enclosure consists of two vertical walls, the left wall has a thickness and maintain at a uniform hot temperature, while the opposite wall at cold temperature and the horizontal walls are isolated. A high thermal conductivity thin baffle has been added on the insulated bottom wall at a different inclination angles. The effect of the volume fractions of nanoparticles (f), Rayleigh number (Ra), solid wall thermal conductivity ratio (Kr), baffle incline angles (Ø) and the thickness of solid wall (D) on the isothermal lines, fluid flow patterns and the average Nusselt number (Nu)  has been investigated. At low Rayleigh number (Ra=103 to 104) the Isothermal lines are parallel with the vertical wall which is characteristic of conduction heat transfer. on the other hand, when Rayleigh number increase to (Ra=106),  the isotherms lines distribution in the inner fluid become parallel curves with the adiabatic horizontal walls of the enclosure and smooth in this case convection heat transfer becomes dominant. As the Rayleigh number further increases, the average Nusselt number enhance because of buoyancy force become stronger. In addition, the fluid flow within the space is affected by the presence of a fin attached to the lower wall that causes blockage and obstruction of flow near the hot wall, hence the recirculation cores become weak and effect on the buoyant force. The maximum value of the stream function can be noticed in case of nanofluid at (Ø=60), whereas they decrease when (Ø > 60), where the baffle obstruction causing decreases in flow movement. So that the left region temperature increases which cause reduction of the convective heat transfer by the inner fluid temperatures. This is an indication of enhancing of insulation. When the inclination angle increases (Ø >90), the baffle obstruction on flow and fluid resistance becomes smaller and the buoyancy strength increase, as a result, the heat transfer is increasing in this case. As a result of increasing the thermal conductivity from 1 to 10, an increase in the amount of heat transferred through the solid wall to the internal fluid have been noticed. This change can be seen in the isothermal lines, also, there was growth and an increase in the temperature gradient. The increasing of wall thickness from (D=0.1 to 0.4) leads to reduce the intensive heating through the solid wall as well as small heat transferred to the inner fluid. Therefore, it can be noticed that when the wall thickness increases the stream function decrease.


Sign in / Sign up

Export Citation Format

Share Document